ECG Denoising Method Based on an Improved VMD Algorithm

算法 符号 降噪 噪音(视频) 数学 计算机科学 人工智能 算术 图像(数学)
作者
Chengjun Li,Yacen Wu,Haijun Lin,Jianmin Li,Fu Zhang,Yuxiang Yang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (23): 22725-22733 被引量:39
标识
DOI:10.1109/jsen.2022.3214239
摘要

Electrocardiogram (ECG) acquisition is easily contaminated by interferences, and denoising is the most important task in ECG detection. The variational mode decomposition (VMD) algorithm is widely used in ECG denoising, which can overcome mode aliasing between intrinsic mode function (IMF) components that existed in the traditional empirical mode decomposition (EMD) algorithm, but the mode decomposition number ${K}$ and penalty factor $\alpha $ in VMD must be optimized to obtain the best signal decomposition accuracy. This article proposes an improved VMD denoising algorithm that overcomes the shortcomings of slow parameter selection and poor generalization in the traditional VMD algorithm. The algorithm presented first adopts the EMD algorithm to remove the low-frequency baseline drift noise and then employs the adaptive particle swarm optimization (APSO) algorithm to optimize the parameter pair ( ${K}$ , $\alpha $ ) for VMD. To validate the denoising performance of the improved VMD algorithm, the No. 103 record from the Massachusetts Institute of Technology (MIT) arrhythmia database is first selected as the pure ECG signal, then both 20-dB Gaussian white noises and 0.3-Hz baseline drift are added to simulate the noisy ECG signal. Second, the ECG signals of nine subjects are collected by a customized ECG detection platform based on AD8232 and ADALM1000. The ECG denoising results in simulation and actual experiments show that the improved VMD algorithm achieves the highest signal-to-noise ratio (SNR), correlation coefficient (CC), and minimum mean square error (MSE) compared with the traditional EMD and VMD algorithms, which demonstrates that the proposed denoising algorithm has stronger denoising ability and better retains morphological characteristics of the original ECG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子abcy发布了新的文献求助20
1秒前
FashionBoy应助宋小姐冲鸭采纳,获得10
1秒前
wjt完成签到 ,获得积分10
2秒前
平淡如天完成签到,获得积分10
2秒前
2秒前
3秒前
哗啦啦啦发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
Yangy_完成签到,获得积分10
5秒前
田様应助up采纳,获得10
6秒前
领导范儿应助Tail采纳,获得10
7秒前
阿柴_Htao完成签到,获得积分10
7秒前
CCR完成签到,获得积分10
7秒前
娃哈哈发布了新的文献求助10
9秒前
9秒前
9秒前
完美世界应助我劝告了风采纳,获得10
9秒前
成航朱关注了科研通微信公众号
9秒前
春夏发布了新的文献求助10
9秒前
9秒前
桐桐应助哗啦啦啦采纳,获得10
10秒前
10秒前
xuebi发布了新的文献求助10
10秒前
10秒前
206拧绳哥完成签到,获得积分10
10秒前
windcreator完成签到,获得积分10
11秒前
二鹏完成签到 ,获得积分10
11秒前
junjun完成签到,获得积分10
12秒前
12秒前
Jasper应助026采纳,获得10
13秒前
13秒前
206拧绳哥发布了新的文献求助10
13秒前
13秒前
奔跑西木发布了新的文献求助10
13秒前
领导范儿应助科研顺利1采纳,获得10
14秒前
wzyyyyue完成签到,获得积分10
14秒前
14秒前
15秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Mechanochemistry of Solid Surfaces 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806526
求助须知:如何正确求助?哪些是违规求助? 3351332
关于积分的说明 10353525
捐赠科研通 3067168
什么是DOI,文献DOI怎么找? 1684366
邀请新用户注册赠送积分活动 809496
科研通“疑难数据库(出版商)”最低求助积分说明 765543