A dynamic learning-based ECG feature extraction method for myocardial infarction detection

人工智能 计算机科学 模式识别(心理学) 特征提取 灵敏度(控制系统) 特征选择 滤波器(信号处理) 特征(语言学) 数据集 试验装置 集合(抽象数据类型) 机器学习 计算机视觉 工程类 哲学 语言学 程序设计语言 电子工程
作者
Qinghua Sun,Zhanfei Xu,Chunmiao Liang,Fukai Zhang,Jiali Li,Rugang Liu,Tianrui Chen,Bing Ji,Yuguo Chen,Cong Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (12): 124005-124005 被引量:7
标识
DOI:10.1088/1361-6579/acaa1a
摘要

Abstract Objective. Myocardial infarction (MI) is one of the leading causes of human mortality in all cardiovascular diseases globally. Currently, the 12-lead electrocardiogram (ECG) is widely used as a first-line diagnostic tool for MI. However, visual inspection of pathological ECG variations induced by MI remains a great challenge for cardiologists, since pathological changes are usually complex and slight. Approach. To have an accuracy of the MI detection, the prominent features extracted from in-depth mining of ECG signals need to be explored. In this study, a dynamic learning algorithm is applied to discover prominent features for identifying MI patients via mining the hidden inherent dynamics in ECG signals. Firstly, the distinctive dynamic features extracted from the multi-scale decomposition of dynamic modeling of the ECG signals effectively and comprehensibly represent the pathological ECG changes. Secondly, a few most important dynamic features are filtered through a hybrid feature selection algorithm based on filter and wrapper to form a representative reduced feature set. Finally, different classifiers based on the reduced feature set are trained and tested on the public PTB dataset and an independent clinical data set. Main results. Our proposed method achieves a significant improvement in detecting MI patients under the inter-patient paradigm, with an accuracy of 94.75%, sensitivity of 94.18%, and specificity of 96.33% on the PTB dataset. Furthermore, classifiers trained on PTB are verified on the test data set collected from 200 patients, yielding a maximum accuracy of 84.96%, sensitivity of 85.04%, and specificity of 84.80%. Significance. The experimental results demonstrate that our method performs distinctive dynamic feature extraction and may be used as an effective auxiliary tool to diagnose MI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
aiminz发布了新的文献求助10
1秒前
英姑应助王自信采纳,获得30
1秒前
研友_LwlRen发布了新的文献求助10
2秒前
2秒前
Ava应助鉨汏闫采纳,获得10
2秒前
332535完成签到 ,获得积分10
2秒前
风趣的洙完成签到,获得积分10
3秒前
紫色系发布了新的文献求助10
3秒前
妩媚的代玉完成签到 ,获得积分20
4秒前
葱油饼发布了新的文献求助10
4秒前
5秒前
遠山完成签到,获得积分10
5秒前
6秒前
猪猪hero发布了新的文献求助10
6秒前
6秒前
7秒前
风趣姿完成签到 ,获得积分10
8秒前
8秒前
义气的访波完成签到,获得积分10
8秒前
爱吃大嘴巴完成签到,获得积分10
8秒前
8秒前
yao8720发布了新的文献求助10
10秒前
李明完成签到,获得积分10
10秒前
10秒前
隐形曼青应助专一的诗双采纳,获得10
11秒前
11秒前
keyanli完成签到,获得积分10
11秒前
shenerqing发布了新的文献求助10
11秒前
Jasper应助秋澄采纳,获得10
12秒前
NexusExplorer应助包容凌翠采纳,获得10
12秒前
Captain发布了新的文献求助10
12秒前
在水一方应助幸福电灯胆采纳,获得10
12秒前
阿布与小佛完成签到 ,获得积分10
13秒前
fy发布了新的文献求助10
13秒前
orchid完成签到,获得积分0
13秒前
13秒前
gaoww发布了新的文献求助10
13秒前
阿良发布了新的文献求助10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789164
求助须知:如何正确求助?哪些是违规求助? 3334289
关于积分的说明 10268778
捐赠科研通 3050705
什么是DOI,文献DOI怎么找? 1674102
邀请新用户注册赠送积分活动 802497
科研通“疑难数据库(出版商)”最低求助积分说明 760657