Subjective and objective sleep and circadian parameters as predictors of depression-related outcomes: A machine learning approach in UK Biobank

昼夜节律 萧条(经济学) 计时型 心理学 置信区间 内科学 焦虑 活动记录 早晨 临床心理学 精神科 医学 宏观经济学 经济
作者
Laura M. Lyall,Natasha Sangha,Xingxing Zhu,Donald M. Lyall,Joey Ward,Rona J. Strawbridge,Breda Cullen,Daniel J. Smıth
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:335: 83-94 被引量:23
标识
DOI:10.1016/j.jad.2023.04.138
摘要

Sleep and circadian disruption are associated with depression onset and severity, but it is unclear which features (e.g., sleep duration, chronotype) are important and whether they can identify individuals showing poorer outcomes. Within a subset of the UK Biobank with actigraphy and mental health data (n = 64,353), penalised regression identified the most useful of 51 sleep/rest-activity predictors of depression-related outcomes; including case-control (Major Depression (MD) vs. controls; postnatal depression vs. controls) and within-case comparisons (severe vs. moderate MD; early vs. later onset, atypical vs. typical symptoms; comorbid anxiety; suicidality). Best models (of lasso, ridge, and elastic net) were selected based on Area Under the Curve (AUC). For MD vs. controls (n(MD) = 24,229; n(control) = 40,124), lasso AUC was 0.68, 95 % confidence interval (CI) 0.67–0.69. Discrimination was reasonable for atypical vs. typical symptoms (n(atypical) = 958; n(typical) = 18,722; ridge: AUC 0.74, 95 % CI 0.71–0.77) but poor for remaining models (AUCs 0.59–0.67). Key predictors across most models included: difficulty getting up, insomnia symptoms, snoring, actigraphy-measured daytime inactivity and lower morning activity (~8 am). In a distinct subset (n = 310,718), the number of these factors shown was associated with all depression outcomes. Analyses were cross-sectional and in middle-/older aged adults: comparison with longitudinal investigations and younger cohorts is necessary. Sleep and circadian measures alone provided poor to moderate discrimination of depression outcomes, but several characteristics were identified that may be clinically useful. Future work should assess these features alongside broader sociodemographic, lifestyle and genetic features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hong_Bin完成签到,获得积分10
刚刚
MY发布了新的文献求助50
刚刚
明亮的泥猴桃完成签到,获得积分10
1秒前
1秒前
SciGPT应助甜甜的梦菡采纳,获得10
2秒前
是莉莉娅完成签到,获得积分10
2秒前
dola完成签到,获得积分10
3秒前
魏某某完成签到,获得积分10
3秒前
4秒前
WEILAI完成签到,获得积分10
4秒前
李李完成签到,获得积分10
4秒前
光电效应完成签到,获得积分10
4秒前
szbllc完成签到,获得积分10
4秒前
MiManchi完成签到,获得积分10
5秒前
XD824发布了新的文献求助10
5秒前
KK完成签到,获得积分10
5秒前
曹文鹏完成签到 ,获得积分10
5秒前
6秒前
呜呼完成签到 ,获得积分10
6秒前
万能图书馆应助willow采纳,获得30
6秒前
6秒前
星辰大海应助东晓采纳,获得10
6秒前
0713完成签到,获得积分10
6秒前
坚定的小蘑菇完成签到 ,获得积分10
6秒前
田様应助慕舒采纳,获得10
7秒前
小烦同学完成签到,获得积分10
7秒前
风清扬应助忧郁绝音采纳,获得10
7秒前
心想事成完成签到,获得积分10
7秒前
帅气的沧海完成签到 ,获得积分10
7秒前
小明完成签到,获得积分10
7秒前
wyw完成签到,获得积分10
8秒前
喜东东爱科研完成签到,获得积分10
8秒前
8秒前
木木三完成签到,获得积分10
9秒前
zwj003完成签到,获得积分10
10秒前
小刘完成签到,获得积分10
11秒前
帅气的八宝粥完成签到,获得积分10
11秒前
wudizhuzhu233完成签到,获得积分10
12秒前
哈哈发布了新的文献求助10
12秒前
淡然靖柔完成签到,获得积分10
12秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
Research on the design of hear-through controllers for active noise control headphones based on cascade biquad filters considering different directions of sound arrivals 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872081
求助须知:如何正确求助?哪些是违规求助? 3414077
关于积分的说明 10687606
捐赠科研通 3138504
什么是DOI,文献DOI怎么找? 1731707
邀请新用户注册赠送积分活动 834943
科研通“疑难数据库(出版商)”最低求助积分说明 781507