Predicting Binding Affinity Between MHC-I Receptor and Peptides Based on Molecular Docking and Protein-peptide Interaction Interface Characteristics

对接(动物) 化学 蛋白质-蛋白质相互作用 可解释性 计算生物学 分子识别 药物设计 分子模型 数量结构-活动关系 生物化学 立体化学 人工智能 计算机科学 生物 分子 有机化学 护理部 医学
作者
Songtao Huang,Yanrui Ding
出处
期刊:Letters in Drug Design & Discovery [Bentham Science Publishers]
卷期号:20 (12): 1982-1993 被引量:1
标识
DOI:10.2174/1570180819666220819102035
摘要

Background: Predicting protein-peptide binding affinity is one of the leading research subjects in peptide drug design and repositioning. In previous studies, models constructed by researchers just used features of peptide structures. These features had limited information and could not describe the proteinpeptide interaction mode. This made models and predicted results lack interpretability in pharmacy and biology, which led to the protein-peptide interaction mode not being reflected. Therefore, it was of little significance for the design of peptide drugs. Objective: Considering the protein-peptide interaction mode, we extracted protein-peptide interaction interface characteristics and built machine learning models to improve the performance and enhance the interpretability of models. Methods: Taking MHC-I protein and its binding peptides as the research object, protein-peptide complexes were obtained by molecular docking, and 94 protein-peptide interaction interface characteristics were calculated. Then ten important features were selected using recursive feature elimination to construct SVR, RF, and MLP models to predict protein-peptide binding affinity. Results: The MAE of the SVR, RF and MLP models constructed using protein-peptide interaction interface characteristics are 0.2279, 0.2939 and 0.2041, their MSE are 0.1289, 0.1308 and 0.0780, and their R2 reached 0.8711, 0.8692 and 0.9220, respectively. Conclusion: The model constructed using protein-peptide interaction interface characteristics showed better prediction results. The key features for predicting protein-peptide binding affinity are the bSASA of negatively charged species, hydrogen bond acceptor, hydrophobic group, planarity, and aromatic ring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
俭朴的听寒完成签到,获得积分10
5秒前
陈疾坎完成签到 ,获得积分10
8秒前
jackycas发布了新的文献求助10
9秒前
Kabutack完成签到,获得积分10
11秒前
科目三应助123采纳,获得10
14秒前
科目三应助Arthur Zhu采纳,获得10
14秒前
16秒前
20秒前
major发布了新的文献求助30
21秒前
taotao发布了新的文献求助10
21秒前
22秒前
23秒前
26秒前
山260完成签到 ,获得积分10
26秒前
27秒前
27秒前
123发布了新的文献求助10
29秒前
wanci应助起风采纳,获得10
30秒前
taotao完成签到,获得积分10
32秒前
尊敬的惠发布了新的文献求助10
32秒前
NICAI发布了新的文献求助10
33秒前
kbg990818完成签到 ,获得积分10
34秒前
明理开山完成签到,获得积分10
38秒前
李爱国应助你好采纳,获得10
40秒前
42秒前
43秒前
默默的惜灵完成签到 ,获得积分10
43秒前
卡卡完成签到,获得积分10
43秒前
起风发布了新的文献求助10
46秒前
47秒前
kilig完成签到,获得积分10
47秒前
锤子发布了新的文献求助15
48秒前
48秒前
科目三应助iui飞采纳,获得10
50秒前
霸气的代天完成签到,获得积分10
50秒前
起风完成签到,获得积分10
53秒前
糊涂的板栗完成签到,获得积分10
54秒前
54秒前
李某完成签到 ,获得积分10
54秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818646
求助须知:如何正确求助?哪些是违规求助? 3361710
关于积分的说明 10413854
捐赠科研通 3079926
什么是DOI,文献DOI怎么找? 1693653
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248