Investigation of Short‐Circuit Current Density in Non‐Fullerene‐Based Ternary Organic Solar Cells by Incorporating Machine Learning Algorithms with Effective Descriptors

三元运算 富勒烯 有机太阳能电池 电流(流体) 电流密度 短路 材料科学 计算机科学 算法 人工智能 光伏系统 物理 工程类 化学 电气工程 电压 有机化学 量子力学 程序设计语言
作者
Min‐Hsuan Lee,Ying‐Chun Chen,Yi‐Ming Chang,Bo Hou
出处
期刊:Solar RRL [Wiley]
标识
DOI:10.1002/solr.202500167
摘要

Non‐fullerene acceptor (NFA)‐based ternary organic solar cells (OSCs) are emerging as promising devices for converting sunlight into electricity, contributing to environmental solutions. However, selecting the third component remains a significant challenge, as it plays a critical role in achieving high short‐circuit current density ( J sc ) in NFA‐based ternary OSCs (comprising donors, acceptors, and the third component). Traditional trial‐and‐error experimental methods face substantial limitations, including high energy consumption, cost, and time demands, which may not be sufficient for investigating the quantitative relationships between material properties and J sc in ternary OSCs. In this study, we examine the effects of the highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy gap (ΔHOMO and ΔLUMO) between different organic materials, considering these as effective molecular descriptors, on the primary photovoltaic parameter ( J sc ) in NFA‐based ternary OSCs. The eXtreme Gradient Boosting (XGBoost) algorithm yields reasonable predictions, with an R 2 value of 0.76. Additionally, three NFA‐based ternary OSCs are fabricated and characterized experimentally to validate the predictions made by the proposed model. Using three different NFA‐based ternary OSCs as inputs, the model demonstrates good predictive accuracy for J sc values. The proposed interpretable model and effective molecular descriptors offer a practical machine‐learning approach for accelerating the development of NFA‐based ternary OSCs with targeted J sc values and can also be extended to other organic electronic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助LYQ采纳,获得10
4秒前
5秒前
Wu完成签到 ,获得积分10
6秒前
xiao柒柒柒完成签到,获得积分10
8秒前
ZZZ发布了新的文献求助10
9秒前
福多多完成签到,获得积分10
9秒前
LYQ完成签到,获得积分10
12秒前
13秒前
13秒前
weijie发布了新的文献求助10
14秒前
科研通AI5应助飞123采纳,获得10
14秒前
16秒前
YangyangLiu发布了新的文献求助10
17秒前
旺123完成签到,获得积分10
17秒前
小李完成签到,获得积分10
17秒前
Wicky完成签到,获得积分10
18秒前
历史真相发布了新的文献求助10
18秒前
Kiosta应助cg采纳,获得10
18秒前
19秒前
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
19秒前
上官若男应助科研通管家采纳,获得10
20秒前
彭于晏应助科研通管家采纳,获得10
20秒前
20秒前
21秒前
琉璃苣发布了新的文献求助10
23秒前
24秒前
25秒前
26秒前
26秒前
上官若男应助yinghuaxr采纳,获得10
26秒前
shusz发布了新的文献求助10
27秒前
热心市民小红花应助寒荷采纳,获得10
27秒前
29秒前
xc完成签到 ,获得积分10
30秒前
mingyahaoa完成签到,获得积分10
30秒前
Wuhuijing发布了新的文献求助10
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841873
求助须知:如何正确求助?哪些是违规求助? 3383895
关于积分的说明 10531786
捐赠科研通 3104108
什么是DOI,文献DOI怎么找? 1709514
邀请新用户注册赠送积分活动 823302
科研通“疑难数据库(出版商)”最低求助积分说明 773878