The measurement of serum antibodies that specifically recognize self-antigens is a critical diagnostic in autoimmunity. A limitation of such an approach is sensitivity to detect the antibody, particularly when abundant self-antigens in the body may bind and sequester circulating specific antibodies. The presence of specific memory B cells (Bmem) may provide a more sensitive and robust indicator of an autoimmune response, as is suggested for certain anti-viral responses. B cell enzyme-linked ImmunoSpot (ELISPOT) is capable of detecting antigen-specific Bmem cells in blood at the single cell level, following stimulation of peripheral blood mononuclear cells (PBMCs) to expand and differentiate the Bmem cells into functional antibody-secreting cells (ASCs). While this assay has been widely utilized in infectious diseases and vaccination, detection is more difficult for autoantigens due to self-tolerance and specific tissue compartmentalization of immune responses, making autoantigen-specific B cells rare in the circulation. The cycles of re-activation of Bmem cells to become ASCs, that may reflect disease flare-ups in autoimmunity, are not well defined. For several autoimmune diseases (ADs), the targeting of B cells via depleting monoclonal antibodies has proven to be an effective treatment, where Bmem cells are likely being targeted. The measurement of autoantigen-reactive Bmem cells may aid in diagnosis and staging of clinical severity, or be a metric for efficacious treatments, thus providing an additional informative biomarker of ADs. How B cell ELISPOT has been utilized to characterize Bmem cells in human ADs is described here, including the advantages and disadvantages of the assay.