Interpretable Aging Signatures in Human Retinal Cell Types Revealed by Single-Cell RNA Sequencing and Sparse Logistic Regression

转录组 视网膜 细胞 电池类型 细胞生物学 计算机科学 计算生物学 生物 类型(生物学) 人工智能 神经科学 基因 基因表达 遗传学 生态学
作者
Luning Yang,Sen Lin,Yiwen Tao,Qi Pan,Tengda Cai,Yunyan Ye,Jianhui Liu,Yang Zhou,Yongqing Shao,Quanyong Yi,Zen Huat Lu,Lie Chen,Gareth J. McKay,Richard Rankin,Fan Li,Weihua Meng
标识
DOI:10.1101/2025.05.29.656930
摘要

Abstract Purpose To characterize cell type specific transcriptional changes during human retinal aging and develop machine learning model for cellular age discrimination in a Chinese cohort. Design Cross-sectional, laboratory-based observational study. Participants Eighteen unfrozen retinas from 12 Chinese donors (9 young, 34-55y; 9 old, 68-92 y). Methods Single-cell RNA sequencing (10x, v3.1) generated 223612 cells, batch-corrected with scVI; age-related signatures were defined by intersecting single-cell and pseudo-bulk differentially expressed genes, then cell-type-specific panels were rank-ordered with L1-regularised logistic regression plus recursive feature elimination and interpreted through hallmark-pathway enrichment and transcription-factor regulon mapping. Main Outcome Measures Age-related cellular composition shifts; cell-type-specific differentially expressed genes; machine-learning classifier accuracy and feature rankings; transcription factor regulon activity changes. Results Eleven major retinal cell populations were identified. Aging showed declining rod-to-cone ratios, reduced bipolar cell proportions among interneurons, and increased astrocyte abundance. Müller glial cells exhibited the most pronounced transcriptional changes, followed by bipolar cells and rods. Machine-learning classifiers achieved 80-96% accuracy across cell types (microglia 96%, horizontal cells 93%, bipolar cells 91%, cones 90%, rods 89%). Shared aging signatures included mitochondrial dysfunction and inflammatory activation. Cell specific vulnerabilities emerged: mitochondria-centric stress in rods/bipolar cells, proteostasis-retinoid metabolism in cones, and structural-RNA maintenance in horizontal cells. Conclusions This study provides the first machine learning derived, cell-type specific aging signatures for human retina in a Chinese cohort, revealing both conserved molecular hallmarks and distinctive cellular vulnerabilities that inform targeted therapeutic strategies for retinal aging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大凤发布了新的文献求助20
刚刚
尹晨熙发布了新的文献求助10
1秒前
瘾9发布了新的文献求助10
1秒前
1秒前
打打应助木子采纳,获得10
2秒前
lcj完成签到,获得积分10
2秒前
蝌蚪发布了新的文献求助20
3秒前
量子星尘发布了新的文献求助10
3秒前
归尘发布了新的文献求助10
3秒前
事业顺发布了新的文献求助20
3秒前
3秒前
某不科学的萌萌应助lele采纳,获得10
4秒前
无极微光应助钦钦小豆包采纳,获得20
4秒前
5秒前
爆米花应助王璐瑶采纳,获得10
5秒前
香蕉觅云应助ZTT采纳,获得10
5秒前
Jasper应助乐乐采纳,获得10
5秒前
njc大魔王完成签到,获得积分10
6秒前
李健应助小北采纳,获得10
6秒前
6秒前
6秒前
7秒前
汉堡完成签到,获得积分10
8秒前
8秒前
abbbb发布了新的文献求助10
10秒前
科研通AI6应助gemini0601采纳,获得30
10秒前
廿四完成签到 ,获得积分10
10秒前
zzhc完成签到,获得积分10
10秒前
搜集达人应助zhendezy采纳,获得10
11秒前
小橘子完成签到,获得积分10
11秒前
11秒前
222333发布了新的文献求助10
12秒前
耍酷的卿完成签到,获得积分10
13秒前
迪迦完成签到,获得积分10
13秒前
Yy发布了新的文献求助10
13秒前
简单白梦完成签到,获得积分10
13秒前
13秒前
科研通AI6应助倒不会采纳,获得10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609888
求助须知:如何正确求助?哪些是违规求助? 4694483
关于积分的说明 14882481
捐赠科研通 4720586
什么是DOI,文献DOI怎么找? 2544960
邀请新用户注册赠送积分活动 1509797
关于科研通互助平台的介绍 1473002