亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating the Mean: Behavioral and Neural Correlates of Summary Representations for Time Intervals

心理学 背景(考古学) 统计 变化(天文学) 操作化 持续时间(音乐) 时间知觉 认知心理学 感知 神经科学 数学 艺术 古生物学 哲学 物理 文学类 认识论 天体物理学 生物
作者
Taku Otsuka,Hakan Karsilar,Hedderik van Rijn
出处
期刊:Journal of Cognitive Neuroscience [The MIT Press]
卷期号:: 1-19
标识
DOI:10.1162/jocn_a_02327
摘要

Our behavior is guided by the statistical regularities in the environment. Prior research on temporal context effects has highlighted the dynamic processes through which humans adapt to the environment's temporal regularities. Whereas earlier approaches have focused on the adaptation to traces of previous individual events, real-world performance often requires extracting and retaining summary statistics (e.g., the mean) of temporal distributions. To investigate these summary representations for temporal distributions and to test their sensitivity to distributional changes, we explicitly asked participants to extract the mean of different distributions of time intervals, which shared the same mean but varied in their variability specifically operationalized by the width and presentation frequency of the intervals. Our findings showed that the variability of the estimated mean increased with the distributions' variability, even though the actual mean remained constant. We further examined how such learning of temporal distributions modulates EEG signals during subsequent temporal judgments. An analysis revealed that the contingent negative variation, predictive of single-trial RTs, was correlated with how much individuals' estimates of the mean were affected by the distributions' variability. Conversely, the postinterval P2 was not modulated by the distributions but predicted participants' responses, suggesting that P2 reflects the perceived duration of an interval. Taken together, our results demonstrate not only that humans can accurately estimate the mean of a temporal distribution but also that the representation of the mean becomes more uncertain as the variability of the distribution increases, as reflected neurally in the preparation-related contingent negative variation during temporal decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助decade采纳,获得10
12秒前
12秒前
zoeyy发布了新的文献求助10
16秒前
FFFFcom发布了新的文献求助10
17秒前
dagangwood完成签到 ,获得积分10
21秒前
wanci应助轻松的曼冬采纳,获得10
27秒前
归陌完成签到 ,获得积分10
34秒前
Hello应助zoeyy采纳,获得10
35秒前
难过的钥匙完成签到 ,获得积分10
36秒前
38秒前
42秒前
FFFFcom发布了新的文献求助10
44秒前
眼睛大的尔竹完成签到 ,获得积分10
51秒前
英姑应助wongtx采纳,获得10
1分钟前
花痴的小松鼠完成签到 ,获得积分10
1分钟前
科研通AI6应助金乌采纳,获得10
1分钟前
chenqingyu完成签到,获得积分10
1分钟前
1分钟前
李健应助chenqingyu采纳,获得10
1分钟前
天真从露完成签到,获得积分10
1分钟前
金乌发布了新的文献求助10
1分钟前
1分钟前
西瓜刀完成签到 ,获得积分10
1分钟前
1分钟前
luroa完成签到 ,获得积分10
1分钟前
lixiaolu完成签到 ,获得积分10
1分钟前
瘦瘦远山完成签到,获得积分10
1分钟前
zest发布了新的文献求助10
1分钟前
忐忑的烤鸡完成签到,获得积分10
1分钟前
欢呼宛秋完成签到 ,获得积分10
1分钟前
科研通AI6应助FFFFcom采纳,获得10
1分钟前
瘦瘦远山发布了新的文献求助10
1分钟前
金乌完成签到 ,获得积分10
1分钟前
Akim应助轻松的曼冬采纳,获得10
2分钟前
星辰大海应助瘦瘦采纳,获得10
2分钟前
李爱国应助CryBill采纳,获得10
2分钟前
轻松的曼冬完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4681624
求助须知:如何正确求助?哪些是违规求助? 4057422
关于积分的说明 12545033
捐赠科研通 3752651
什么是DOI,文献DOI怎么找? 2072503
邀请新用户注册赠送积分活动 1101596
科研通“疑难数据库(出版商)”最低求助积分说明 980895