极限(数学)
范德瓦尔斯力
理想(伦理)
凝聚态物理
异质结
热的
电导
材料科学
物理
化学物理
纳米技术
量子力学
热力学
数学
分子
政治学
数学分析
法学
作者
Ting Liang,Ke Xu,Penghua Ying,Wenwu Jiang,Meng Han,Xinyu Wu,Wengen Ouyang,Yimin Yao,Xiaoliang Zeng,Zhenqiang Ye,Zheyong Fan,Jianbin Xu
出处
期刊:Cornell University - arXiv
日期:2025-02-19
被引量:1
标识
DOI:10.48550/arxiv.2502.13601
摘要
Probing the ideal limit of interfacial thermal conductance (ITC) in two-dimensional (2D) heterointerfaces is of paramount importance for assessing heat dissipation in 2D-based nanoelectronics. Using graphene/hexagonal boron nitride (Gr/$h$-BN), a structurally isomorphous heterostructure with minimal mass contrast, as a prototype, we develop an accurate yet highly efficient machine-learned potential (MLP) model, which drives nonequilibrium molecular dynamics (NEMD) simulations on a realistically large system with over 300,000 atoms, enabling us to report the ideal limit range of ITC for 2D heterostructures at room temperature. We further unveil an intriguing stacking-sequence-dependent ITC hierarchy in the Gr/$h$-BN heterostructure, which can be connected to moir\'e patterns and is likely universal in van der Waals layered materials. The underlying atomic-level mechanisms can be succinctly summarized as energy-favorable stacking sequences facilitating out-of-plane phonon energy transmission. This work demonstrates that MLP-driven MD simulations can serve as a new paradigm for probing and understanding thermal transport mechanisms in 2D heterostructures and other layered materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI