Utilities’ Managed Home Charging Programs for Electric Vehicles

业务 电动汽车 计算机科学 功率(物理) 物理 量子力学
作者
Ali Fattahi
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2023.00850
摘要

Experts estimate 20 million electric vehicles will be on U.S. roads by 2030, and the majority (around 80%) of the electric vehicle drivers will use home charging. Many utilities are designing managed home charging programs to centrally manage charging times to reduce cost, avoid new and aggravated peaks and blackouts, and ensure grid stability. These managed home charging programs are either active, in which the utility continuously controls the charging while the vehicle is plugged in, or passive, in which the participants decide when to charge based on preannounced low-rate episodes. We study jointly designing and executing these active and passive programs. We present a program-design model, which produces a menu of the charging programs, tailored for each driver type, and a load-management model, which dynamically manages the load supply to each individual participant. The load-management model consists of a large number of nonhomogeneous participants, and it is a large-scale mixed-integer nonlinear stochastic problem. We present an effective approximation method, conduct thorough theoretical and numerical analyses of our approximation, and provide worst-case bounds for its error components. Our methodology provides detailed insights on the amount and timing of the improvements achievable in cost and demand variability by offering managed home charging programs, and by customizing the passive programs. It also offers detailed insights on the significance of the tradeoff between cost and demand variability. We find promoting a culture of charging electric vehicles every night may significantly increase utilities’ total cost if passive programs have high participation levels. This paper was accepted by Jeannette Song, operations management. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.00850 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinedan82发布了新的文献求助10
刚刚
刚刚
科研通AI5应助无心的早晨采纳,获得10
1秒前
yzy发布了新的文献求助30
1秒前
zyp发布了新的文献求助50
1秒前
1秒前
吕德华完成签到,获得积分10
3秒前
Sara完成签到 ,获得积分10
3秒前
灼灼朗朗发布了新的文献求助10
4秒前
5秒前
杨艺关注了科研通微信公众号
6秒前
阿喵完成签到,获得积分10
6秒前
jiangjiang完成签到,获得积分10
7秒前
沙不凡完成签到,获得积分10
9秒前
可靠的电源完成签到,获得积分10
9秒前
chaos完成签到,获得积分10
10秒前
shinedan82完成签到,获得积分20
11秒前
13秒前
14秒前
14秒前
小马甲应助foxp3采纳,获得20
15秒前
西西发布了新的文献求助10
16秒前
个性归尘应助Dr大壮采纳,获得10
17秒前
18秒前
18秒前
小蘑菇应助孤独靖柏采纳,获得10
18秒前
科研通AI2S应助府于杰采纳,获得10
19秒前
Mr.Ren发布了新的文献求助10
19秒前
终梦发布了新的文献求助10
20秒前
caicai发布了新的文献求助10
20秒前
科研狂魔应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
zho应助科研通管家采纳,获得10
22秒前
英姑应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829930
求助须知:如何正确求助?哪些是违规求助? 3372490
关于积分的说明 10472794
捐赠科研通 3092018
什么是DOI,文献DOI怎么找? 1701700
邀请新用户注册赠送积分活动 818590
科研通“疑难数据库(出版商)”最低求助积分说明 770975