Actuators and Sensors for Application in Agricultural Robots: A Review

机器人 农业 农业生产力 标准化 计算机科学 系统工程 工程类 人工智能 生态学 生物 操作系统
作者
Dongbo Xie,Liang Chen,Lichao Liu,Liqing Chen,Hai Wang
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:10 (10): 913-913 被引量:93
标识
DOI:10.3390/machines10100913
摘要

In recent years, with the rapid development of science and technology, agricultural robots have gradually begun to replace humans, to complete various agricultural operations, changing traditional agricultural production methods. Not only is the labor input reduced, but also the production efficiency can be improved, which invariably contributes to the development of smart agriculture. This paper reviews the core technologies used for agricultural robots in non-structural environments. In addition, we review the technological progress of drive systems, control strategies, end-effectors, robotic arms, environmental perception, and other related systems. This research shows that in a non-structured agricultural environment, using cameras and light detection and ranging (LiDAR), as well as ultrasonic and satellite navigation equipment, and by integrating sensing, transmission, control, and operation, different types of actuators can be innovatively designed and developed to drive the advance of agricultural robots, to meet the delicate and complex requirements of agricultural products as operational objects, such that better productivity and standardization of agriculture can be achieved. In summary, agricultural production is developing toward a data-driven, standardized, and unmanned approach, with smart agriculture supported by actuator-driven-based agricultural robots. This paper concludes with a summary of the main existing technologies and challenges in the development of actuators for applications in agricultural robots, and the outlook regarding the primary development directions of agricultural robots in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
化工渣渣完成签到,获得积分10
刚刚
HQ完成签到,获得积分10
1秒前
飞宇发布了新的文献求助10
1秒前
yana发布了新的文献求助60
1秒前
夏来应助眼睛大的冰岚采纳,获得10
2秒前
跳跃的访琴完成签到 ,获得积分10
4秒前
9527z完成签到,获得积分10
5秒前
zyw0532完成签到,获得积分10
7秒前
DD完成签到,获得积分10
7秒前
大大小发布了新的文献求助10
8秒前
陆si发布了新的文献求助10
10秒前
完美世界应助Monica采纳,获得10
11秒前
领导范儿应助朝三暮四采纳,获得10
13秒前
16秒前
Costing完成签到 ,获得积分10
18秒前
DMY发布了新的文献求助10
22秒前
23秒前
24秒前
27秒前
朝三暮四发布了新的文献求助10
28秒前
高有财完成签到 ,获得积分10
28秒前
脑洞疼应助yana采纳,获得30
29秒前
杨好圆完成签到,获得积分10
31秒前
zdw完成签到,获得积分10
31秒前
Monica发布了新的文献求助10
31秒前
32秒前
慕冬菱完成签到,获得积分10
32秒前
33秒前
JamesPei应助cici采纳,获得10
33秒前
大大小发布了新的文献求助10
34秒前
wefs发布了新的文献求助10
36秒前
小爽完成签到,获得积分0
37秒前
善学以致用应助bzy采纳,获得10
37秒前
充电宝应助cwj采纳,获得10
38秒前
LYQ完成签到,获得积分10
39秒前
CodeCraft应助tian采纳,获得30
40秒前
香蕉觅云应助秦慧萍采纳,获得10
43秒前
Dandelion完成签到,获得积分10
43秒前
44秒前
bkagyin应助MoonKnight采纳,获得10
44秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834985
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498789
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705382
邀请新用户注册赠送积分活动 820539
科研通“疑难数据库(出版商)”最低求助积分说明 772123