A Novel Choquet Integral-Based VIKOR Approach Under Q-Rung Orthopair Hesitant Fuzzy Environment

Choquet积分 模糊逻辑 计算机科学 模糊集 数学 数学优化 人工智能
作者
Hongwu Qin,Yibo Wang,Xiuqin Ma,Jemal Abawajy
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 2890-2902 被引量:8
标识
DOI:10.1109/tfuzz.2024.3364253
摘要

Q-rung orthopair hesitant fuzzy set (q-ROHFS) is a potent and effective technique for dealing with more general and complex uncertainty. Multiple attribute decision-making (MADM) under complex uncertainty has been a key research issue. However in the existing MADM approaches, the fuzzy entropies involve much higher hesitancy degree loss and the fuzzy measure of attributes can not be determined objectively. Also these existing MADM methods under complex uncertainty have high data redundancy and low computational efficiency. In order to solve these problems, this paper proposes a novel q-rung orthopair hesitant fuzzy information MADM method based on the Choquet integral. Firstly, we give the axiomatic definition of q-rung orthopair hesitant fuzzy entropy (q-ROHFE) by extending dual hesitant fuzzy information entropy and derive the fuzzy entropy construction theorem and the two related q-ROHFE formulas, which greatly reduces the loss of hesitancy degree resulting from the existing fuzzy entropy. Secondly, combined with λfuzzy measure and proposed q-ROHFE, a constrained nonlinear fuzzy measure optimization model for q-rung orthopair hesitant fuzzy decision making is presented, which addresses the difficulty that existing research cannot determine the fuzzy measure of attributes under fuzzy MADM. Thirdly, an improved Choquet integral-based VIKOR approach based on the fuzzy measure computed by the model is developed. Finally, two real-life cases are shown to fully illustrate the suggested approach. Experiment results demonstrate that the proposed fuzzy entropy has much less hesitancy degree loss and the proposed approach significantly increases computational efficiency while reducing data redundancy. And our method has strong adaptability and scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oboy应助海上森林的一只猫采纳,获得10
刚刚
刚刚
刚刚
刚刚
温婉的靖儿完成签到,获得积分10
刚刚
1秒前
YCQ发布了新的文献求助10
1秒前
llllll发布了新的文献求助10
2秒前
2秒前
柏林发布了新的文献求助30
2秒前
3秒前
墩墩发布了新的文献求助10
3秒前
丰荣发布了新的文献求助10
3秒前
雪山飞龙发布了新的文献求助10
4秒前
123发布了新的文献求助30
5秒前
xiaoyy发布了新的文献求助10
5秒前
WRWRWR发布了新的文献求助10
5秒前
着急的傲菡完成签到,获得积分10
7秒前
耗尽发布了新的文献求助10
7秒前
8秒前
Jasper应助Hey采纳,获得10
8秒前
PPone1完成签到,获得积分10
9秒前
MIN完成签到,获得积分20
9秒前
梅竹完成签到,获得积分10
9秒前
YCQ完成签到,获得积分10
10秒前
呆呆小猪完成签到,获得积分10
10秒前
11秒前
顾矜应助泡泡龙采纳,获得10
12秒前
llllll完成签到,获得积分10
12秒前
肥肠的枣糕啊完成签到,获得积分10
13秒前
Akim应助科研通管家采纳,获得100
13秒前
英姑应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
callous完成签到,获得积分10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
妮妮完成签到,获得积分10
13秒前
14秒前
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
Strutts and the Arkwrights, 1758-1830 200
A monograph of the genera Conocybe and Pholiotina in Europe 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836894
求助须知:如何正确求助?哪些是违规求助? 3379126
关于积分的说明 10507658
捐赠科研通 3099003
什么是DOI,文献DOI怎么找? 1706635
邀请新用户注册赠送积分活动 821161
科研通“疑难数据库(出版商)”最低求助积分说明 772451