Research on a price prediction model for a multi-layer spot electricity market based on an intelligent learning algorithm

电力市场 热点(计算机编程) 图层(电子) 即期合同 计算机科学 算法 人工智能 工程类 材料科学 经济 电气工程 纳米技术 金融经济学 期货合约 操作系统
作者
Qingbiao Lin,Wan Chen,Xu Zhao,Shangchou Zhou,Xueliang Gong,Bo Zhao
出处
期刊:Frontiers in Energy Research [Frontiers Media SA]
卷期号:12 被引量:3
标识
DOI:10.3389/fenrg.2024.1308806
摘要

With the continuous promotion of the unified electricity spot market in the southern region, the formation mechanism of spot market price and its forecast will become one of the core elements for the healthy development of the market. Effective spot market price prediction, on one hand, can respond to the spot power market supply and demand relationship; on the other hand, market players can develop reasonable trading strategies based on the results of the power market price prediction. The methods adopted in this paper include: Analyzing the principle and mechanism of spot market price formation. Identifying relevant factors for electricity price prediction in the spot market. Utilizing a clustering model and Spearman’s correlation to classify diverse information on electricity prices and extracting data that aligns with the demand for electricity price prediction. Leveraging complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to disassemble the electricity price curve, forming a multilevel electricity price sequence. Using an XGT model to match information across different levels of the electricity price sequence. Employing the ocean trapping algorithm-optimized Bidirectional Long Short-Term Memory (MPA-CNN-BiLSTM) to forecast spot market electricity prices. Through a comparative analysis of different models, this study validates the effectiveness of the proposed MPA-CNN-BiLSTM model. The model provides valuable insights for market players, aiding in the formulation of reasonable strategies based on the market's supply and demand dynamics. The findings underscore the importance of accurate spot market price prediction in navigating the complexities of the electricity market. This research contributes to the discourse on intelligent forecasting models in electricity markets, supporting the sustainable development of the unified spot market in the southern region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JamesPei应助感动城采纳,获得10
1秒前
李李李李李完成签到,获得积分10
2秒前
情怀应助wa采纳,获得50
3秒前
李健的小迷弟应助奔奔采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
chen发布了新的文献求助10
4秒前
4秒前
chaser完成签到,获得积分10
5秒前
呆萌的寻云完成签到,获得积分10
5秒前
suxiang应助不建在的牛马采纳,获得20
5秒前
Xiang发布了新的文献求助10
5秒前
Yy完成签到,获得积分10
6秒前
科研通AI6应助枣核采纳,获得10
6秒前
pym发布了新的文献求助10
6秒前
顾矜应助MuMu采纳,获得10
7秒前
8秒前
香蕉觅云应助Nxx采纳,获得10
8秒前
8秒前
hivivian发布了新的文献求助10
8秒前
8秒前
8秒前
庞育文应助xxy采纳,获得10
9秒前
动听元彤完成签到,获得积分10
9秒前
9秒前
ding应助zhanglh123采纳,获得10
10秒前
桐桐应助AIO采纳,获得10
10秒前
roku发布了新的文献求助10
10秒前
10秒前
繁星发布了新的文献求助10
10秒前
范仪彬完成签到,获得积分20
10秒前
polarisier发布了新的文献求助10
10秒前
wst1988完成签到,获得积分10
10秒前
11秒前
11秒前
zwh给zwh的求助进行了留言
11秒前
隐形曼青应助易安采纳,获得10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340950
求助须知:如何正确求助?哪些是违规求助? 4477226
关于积分的说明 13934513
捐赠科研通 4373192
什么是DOI,文献DOI怎么找? 2402878
邀请新用户注册赠送积分活动 1395702
关于科研通互助平台的介绍 1367761