亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Guided optimization of ToxPi model weights using a Semi-Automated approach

计算机科学 数据挖掘 地理空间分析 仿形(计算机编程) 特征(语言学) 可视化 集合(抽象数据类型) 公制(单位) 序数回归 机器学习 人工智能 工程类 语言学 哲学 运营管理 地图学 程序设计语言 地理 操作系统
作者
Jonathon Fleming,John S. House,Jessie R. Chappel,Alison A. Motsinger‐Reif,David M. Reif
出处
期刊:Computational Toxicology [Elsevier BV]
卷期号:29: 100294-100294 被引量:1
标识
DOI:10.1016/j.comtox.2023.100294
摘要

The Toxicological Prioritization Index (ToxPi) is a visual analysis and decision support tool for dimension reduction and visualization of high throughput, multi-dimensional feature data. ToxPi was originally developed for assessing the relative toxicity of multiple chemicals or stressors by synthesizing complex toxicological data to provide a single comprehensive view of the potential health effects. It continues to be used for profiling chemicals and has since been applied to other types of "sample" entities, including geospatial (e.g. county-level Covid-19 risk and sites of historical PFAS exposure) and other profiling applications. For any set of features (data collected on a set of sample entities), ToxPi integrates the data into a set of weighted slices that provide a visual profile and a score metric for comparison. This scoring system is highly dependent on user-provided feature weights, yet users often lack knowledge of how to define these feature weights. Common methods for predicting feature weights are generally unusable due to inappropriate statistical assumptions and lack of global distributional expectation. However, users often have an inherent understanding of expected results for a small subset of samples. For example, in chemical toxicity, prior knowledge can often place subsets of chemicals into categories of low, moderate or high toxicity (reference chemicals). Ordinal regression can be used to predict weights based on these response levels that are applicable to the entire feature set, analogous to using positive and negative controls to contextualize an empirical distribution. We propose a semi-supervised method utilizing ordinal regression to predict a set of feature weights that produces the best fit for the known response ("reference") data and subsequently fine-tunes the weights via a customized genetic algorithm. We conduct a simulation study to show when this method can improve the results of ordinal regression, allowing for accurate feature weight prediction and sample ranking in scenarios with minimal response data. To ground-truth the guided weight optimization, we test this method on published data to build a ToxPi model for comparison against expert-knowledge-driven weight assignments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
舒服的问雁完成签到,获得积分10
14秒前
19秒前
22秒前
爱笑的以亦完成签到,获得积分10
22秒前
HHYYAA发布了新的文献求助10
25秒前
豪哥发布了新的文献求助10
26秒前
852应助HHYYAA采纳,获得10
29秒前
科研通AI5应助xxx采纳,获得10
33秒前
正直的跳跳糖完成签到 ,获得积分10
38秒前
Ge完成签到,获得积分10
40秒前
木兆完成签到 ,获得积分10
42秒前
福娃选手完成签到 ,获得积分10
46秒前
陈靖潼完成签到 ,获得积分10
49秒前
50秒前
吾日三省吾身完成签到 ,获得积分10
50秒前
金钰贝儿完成签到,获得积分10
50秒前
快乐海豚发布了新的文献求助10
56秒前
1分钟前
小马甲应助John采纳,获得10
1分钟前
起风了完成签到 ,获得积分10
1分钟前
1分钟前
思源应助爱笑的以亦采纳,获得10
1分钟前
传奇3应助Rita采纳,获得10
1分钟前
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
YanK发布了新的文献求助10
1分钟前
杨无敌完成签到 ,获得积分10
1分钟前
1分钟前
Orange应助YanK采纳,获得10
1分钟前
嘎嘎嘎嘎完成签到,获得积分10
1分钟前
CB发布了新的文献求助10
1分钟前
搜集达人应助拾意采纳,获得10
1分钟前
王QQ完成签到 ,获得积分10
1分钟前
孙燕应助CB采纳,获得10
2分钟前
2分钟前
遇上就这样吧应助drbrianlau采纳,获得30
2分钟前
拾意发布了新的文献求助10
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840759
求助须知:如何正确求助?哪些是违规求助? 3382646
关于积分的说明 10526105
捐赠科研通 3102518
什么是DOI,文献DOI怎么找? 1708856
邀请新用户注册赠送积分活动 822754
科研通“疑难数据库(出版商)”最低求助积分说明 773536