Interpretable and Intuitive Machine Learning Approaches for Predicting Disability Progression in Relapsing-Remitting Multiple Sclerosis Based on Clinical and Gray Matter Atrophy Indicators

复发-缓解 可解释性 多发性硬化 逻辑回归 扩大残疾状况量表 队列 人工智能 无线电技术 临床孤立综合征 机器学习 计算机科学 医学 内科学 放射科 疾病 精神科
作者
Zichun Yan,Zhuowei Shi,Qiyuan Zhu,Jinzhou Feng,Yaou Liu,Yuxin Li,Fuqing Zhou,Zhizheng Zhuo,Shuang Ding,Xiaohua Wang,Feiyue Yin,Yang Tang,Bing Lin,Yongmei Li
出处
期刊:Academic Radiology [Elsevier BV]
被引量:3
标识
DOI:10.1016/j.acra.2024.01.032
摘要

Rationale and Objectives

To investigate whether clinical and gray matter (GM) atrophy indicators can predict disability in relapsing-remitting multiple sclerosis (RRMS) and to enhance the interpretability and intuitiveness of a predictive machine learning model.

Materials and methods

145 and 50 RRMS patients with structural MRI and at least 1-year follow-up Expanded Disability Status Scale (EDSS) results were retrospectively enrolled and placed in the discovery and external test cohorts, respectively. Six clinical and radiomics feature-based machine learning classifiers were trained and tested to predict disability progression in the discovery cohort and validated in the external test set. Partial dependence plot (PDP) analysis and a Shiny web application were conducted to enhance the interpretability and intuitiveness.

Results

In the discovery cohort, 98 patients had disability stability, and 47 patients were classified as having disability progression. In the external test set, 35 patients were disability stable, and 15 patients had disability progression. Models trained with both clinical and radiomics features (area under the curve (AUC), 0.725–0.950) outperformed those trained with clinical (AUC, 0.600–0.740) or radiomics features only (AUC, 0.615–0.945). Among clinical+ radiomics feature models, the logistic regression (LR) classifier-based model performed best, with an AUC of 0.950. Only the radiomics feature-only models were applied in the external test set due to the data collection problem and showed fair performance, with AUCs ranging from 0.617 to 0.753. PDP analysis showed that female patients and those with lower volume, surface area, and symbol digit modalities test (SDMT) scores; greater mean curvature and age; and no disease modifying therapy (DMT) had increased probabilities of disease progression. Finally, a Shiny web application (https://lauralin1104.shinyapps.io/LRshiny/) was developed to calculate the risk of disability progression.

Conclusion

Interpretable and intuitive machine learning approaches based on clinical and GM atrophy indicators can help physicians predict disability progression in RRMS patients for clinical decision-making and patient management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是乐乐呀发布了新的文献求助10
1秒前
111完成签到,获得积分10
1秒前
大力思天发布了新的文献求助10
1秒前
李爱国应助hui采纳,获得10
2秒前
2秒前
陈嘻嘻嘻嘻完成签到,获得积分10
2秒前
3秒前
是一颗大树呀完成签到 ,获得积分10
3秒前
5秒前
5秒前
加油呀发布了新的文献求助30
5秒前
英姑应助隐形白开水采纳,获得10
5秒前
6秒前
NBS完成签到,获得积分10
6秒前
YJL关闭了YJL文献求助
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
兰海兵完成签到,获得积分10
7秒前
李爱国应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
自然秋柳发布了新的文献求助10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
科研通AI5应助科研通管家采纳,获得80
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
田様应助钮黎昕采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
Hhhh发布了新的文献求助10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819110
求助须知:如何正确求助?哪些是违规求助? 3362176
关于积分的说明 10415900
捐赠科研通 3080453
什么是DOI,文献DOI怎么找? 1694480
邀请新用户注册赠送积分活动 814668
科研通“疑难数据库(出版商)”最低求助积分说明 768382