Interpretable and Intuitive Machine Learning Approaches for Predicting Disability Progression in Relapsing-Remitting Multiple Sclerosis Based on Clinical and Gray Matter Atrophy Indicators

复发-缓解 多发性硬化 萎缩 灰色(单位) 人工智能 计算机科学 医学 心理学 病理 放射科 精神科
作者
Zichun Yan,Zhuowei Shi,Qiyuan Zhu,Jinzhou Feng,Yaou Liu,Yuxin Li,Fuqing Zhou,Zhizheng Zhuo,Shuang Ding,Xiaohua Wang,Feiyue Yin,Yang Tang,Bing Lin,Yongmei Li
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (7): 2910-2921 被引量:6
标识
DOI:10.1016/j.acra.2024.01.032
摘要

Rationale and Objectives

To investigate whether clinical and gray matter (GM) atrophy indicators can predict disability in relapsing-remitting multiple sclerosis (RRMS) and to enhance the interpretability and intuitiveness of a predictive machine learning model.

Materials and methods

145 and 50 RRMS patients with structural MRI and at least 1-year follow-up Expanded Disability Status Scale (EDSS) results were retrospectively enrolled and placed in the discovery and external test cohorts, respectively. Six clinical and radiomics feature-based machine learning classifiers were trained and tested to predict disability progression in the discovery cohort and validated in the external test set. Partial dependence plot (PDP) analysis and a Shiny web application were conducted to enhance the interpretability and intuitiveness.

Results

In the discovery cohort, 98 patients had disability stability, and 47 patients were classified as having disability progression. In the external test set, 35 patients were disability stable, and 15 patients had disability progression. Models trained with both clinical and radiomics features (area under the curve (AUC), 0.725–0.950) outperformed those trained with clinical (AUC, 0.600–0.740) or radiomics features only (AUC, 0.615–0.945). Among clinical+ radiomics feature models, the logistic regression (LR) classifier-based model performed best, with an AUC of 0.950. Only the radiomics feature-only models were applied in the external test set due to the data collection problem and showed fair performance, with AUCs ranging from 0.617 to 0.753. PDP analysis showed that female patients and those with lower volume, surface area, and symbol digit modalities test (SDMT) scores; greater mean curvature and age; and no disease modifying therapy (DMT) had increased probabilities of disease progression. Finally, a Shiny web application (https://lauralin1104.shinyapps.io/LRshiny/) was developed to calculate the risk of disability progression.

Conclusion

Interpretable and intuitive machine learning approaches based on clinical and GM atrophy indicators can help physicians predict disability progression in RRMS patients for clinical decision-making and patient management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助南丘采纳,获得10
刚刚
刚刚
1秒前
谢建国发布了新的文献求助10
1秒前
zz完成签到 ,获得积分10
1秒前
1秒前
PPD发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助20
2秒前
沈尔云发布了新的文献求助10
2秒前
陈坤完成签到,获得积分10
2秒前
2秒前
Suraim完成签到,获得积分10
2秒前
HHH发布了新的文献求助10
3秒前
胡图图啦啦完成签到,获得积分10
3秒前
谨慎采白发布了新的文献求助10
3秒前
gui发布了新的文献求助10
4秒前
Nikkie2411发布了新的文献求助10
4秒前
4秒前
4秒前
cfghhcx发布了新的文献求助10
4秒前
姜鲅完成签到,获得积分20
5秒前
5秒前
bunian2发布了新的文献求助10
6秒前
6秒前
6秒前
慕青应助PPD采纳,获得10
7秒前
花花发布了新的文献求助10
7秒前
席鸿涛关注了科研通微信公众号
7秒前
科研通AI5应助炙热怜寒采纳,获得30
7秒前
MM完成签到,获得积分10
7秒前
李健的小迷弟应助Fledgling采纳,获得10
8秒前
Qiqige应助zw采纳,获得10
8秒前
上官若男应助zw采纳,获得10
8秒前
充电宝应助快乐紫蓝采纳,获得10
8秒前
8秒前
科研通AI6应助舒适谷冬采纳,获得10
8秒前
剧院的饭桶完成签到,获得积分10
8秒前
whoknowsname完成签到,获得积分10
9秒前
lihuachen91发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
饲料原料图鉴与质量控制手册 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4864317
求助须知:如何正确求助?哪些是违规求助? 4157679
关于积分的说明 12890293
捐赠科研通 3910584
什么是DOI,文献DOI怎么找? 2148152
邀请新用户注册赠送积分活动 1166892
关于科研通互助平台的介绍 1068971