Spatial multi-omics: novel tools to study the complexity of cardiovascular diseases

组学 表观基因组 数据科学 计算机科学 鉴定(生物学) 系统生物学 计算生物学 精密医学 代谢组 代谢组学 生物信息学 生物 医学 病理 基因 植物 基因表达 生物化学 DNA甲基化
作者
Paul Kießling,Christoph Kuppe
出处
期刊:Genome Medicine [BioMed Central]
卷期号:16 (1) 被引量:35
标识
DOI:10.1186/s13073-024-01282-y
摘要

Abstract Spatial multi-omic studies have emerged as a promising approach to comprehensively analyze cells in tissues, enabling the joint analysis of multiple data modalities like transcriptome, epigenome, proteome, and metabolome in parallel or even the same tissue section. This review focuses on the recent advancements in spatial multi-omics technologies, including novel data modalities and computational approaches. We discuss the advancements in low-resolution and high-resolution spatial multi-omics methods which can resolve up to 10,000 of individual molecules at subcellular level. By applying and integrating these techniques, researchers have recently gained valuable insights into the molecular circuits and mechanisms which govern cell biology along the cardiovascular disease spectrum. We provide an overview of current data analysis approaches, with a focus on data integration of multi-omic datasets, highlighting strengths and weaknesses of various computational pipelines. These tools play a crucial role in analyzing and interpreting spatial multi-omics datasets, facilitating the discovery of new findings, and enhancing translational cardiovascular research. Despite nontrivial challenges, such as the need for standardization of experimental setups, data analysis, and improved computational tools, the application of spatial multi-omics holds tremendous potential in revolutionizing our understanding of human disease processes and the identification of novel biomarkers and therapeutic targets. Exciting opportunities lie ahead for the spatial multi-omics field and will likely contribute to the advancement of personalized medicine for cardiovascular diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贾婷婷完成签到,获得积分10
刚刚
充电宝应助伴夏采纳,获得10
刚刚
1秒前
tracey发布了新的文献求助10
1秒前
坚强的翠霜完成签到 ,获得积分10
1秒前
木木发布了新的文献求助10
1秒前
领导范儿应助难过的谷芹采纳,获得10
1秒前
2秒前
临河盗龙完成签到,获得积分10
2秒前
852应助自然的书易采纳,获得10
2秒前
3秒前
强风吹拂发布了新的文献求助10
3秒前
HoydeA发布了新的文献求助10
3秒前
4秒前
yu发布了新的文献求助30
4秒前
4秒前
霸气的若菱完成签到,获得积分20
5秒前
星辰大海应助qian采纳,获得10
5秒前
临河盗龙发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
JQing发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
不想干活应助科研通管家采纳,获得10
9秒前
赘婿应助Aurora采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
Momo发布了新的文献求助10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
陈一一完成签到,获得积分10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
鸣笛应助科研通管家采纳,获得20
9秒前
星辰大海应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4492790
求助须知:如何正确求助?哪些是违规求助? 3946098
关于积分的说明 12236332
捐赠科研通 3603409
什么是DOI,文献DOI怎么找? 1981834
邀请新用户注册赠送积分活动 1018562
科研通“疑难数据库(出版商)”最低求助积分说明 911257