Evaluation of a Machine Learning Algorithm to Classify Ultrasonic Transducer Misalignment and Deployment Using TinyML

软件部署 传感器 超声波传感器 计算机科学 算法 人工智能 机器学习 声学 工程类 物理 软件工程
作者
Des Brennan,Paul Galvin
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (2): 560-560 被引量:3
标识
DOI:10.3390/s24020560
摘要

The challenge for ultrasonic (US) power transfer systems, in implanted/wearable medical devices, is to determine when misalignment occurs (e.g., due to body motion) and apply directional correction accordingly. In this study, a number of machine learning algorithms were evaluated to classify US transducer misalignment, based on data signal transmissions between the transmitter and receiver. Over seven hundred US signals were acquired across a range of transducer misalignments. Signal envelopes and spectrograms were used to train and evaluate machine learning (ML) algorithms, classifying misalignment extent. The algorithms included an autoencoder, convolutional neural network (CNN) and neural network (NN). The best performing algorithm, was deployed onto a TinyML device for evaluation. Such systems exploit low power microcontrollers developed specifically around edge device applications, where algorithms were configured to run on low power, restricted memory systems. TensorFlow Lite and Edge Impulse, were used to deploy trained models onto the edge device, to classify signals according to transducer misalignment extent. TinyML deployment, demonstrated near real-time (<350 ms) signal classification achieving accuracies > 99%. This opens the possibility to apply such ML alignment algorithms to US arrays (capacitive micro-machined ultrasonic transducer (CMUT), piezoelectric micro-machined ultrasonic transducer (PMUT) devices) capable of beam-steering, significantly enhancing power delivery in implanted and body worn systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
地表飞猪发布了新的文献求助10
1秒前
KouZL完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
Lyyyw完成签到,获得积分10
2秒前
清川映叶完成签到,获得积分10
2秒前
3秒前
3秒前
ling361完成签到,获得积分10
3秒前
4秒前
鱼蛋丸子完成签到,获得积分10
5秒前
yiya完成签到,获得积分10
5秒前
5秒前
5秒前
鲤鱼青槐完成签到,获得积分10
6秒前
夏阁完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
张静茹发布了新的文献求助10
8秒前
昆昆完成签到,获得积分10
8秒前
sumugeng完成签到,获得积分10
9秒前
脑洞疼应助陆柒子采纳,获得10
9秒前
李伟完成签到,获得积分10
9秒前
li完成签到,获得积分10
10秒前
10秒前
10秒前
dundun完成签到,获得积分10
10秒前
pp发布了新的文献求助10
10秒前
上官若男应助踏实的师采纳,获得10
11秒前
ssy关注了科研通微信公众号
11秒前
老实续发布了新的文献求助10
11秒前
无聊的翠芙完成签到,获得积分10
11秒前
july发布了新的文献求助10
11秒前
善良语雪发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3904213
求助须知:如何正确求助?哪些是违规求助? 3449297
关于积分的说明 10856978
捐赠科研通 3174561
什么是DOI,文献DOI怎么找? 1753862
邀请新用户注册赠送积分活动 848047
科研通“疑难数据库(出版商)”最低求助积分说明 790671