Exploring new generation of characterization approaches for energy electrochemistry—from <italic>operando</italic> to artificial intelligence

化学 医学
作者
Yu Qiao,Hu Ren,Yu Gu,Fu-Jie Tang,Si-Heng Luo,H.Q. Zhang,Tian Jing-hua,Jun Cheng,Zhong‐Qun Tian
出处
期刊:Zhongguo kexue [Science China Press]
卷期号:54 (3): 338-352 被引量:5
标识
DOI:10.1360/ssc-2023-0222
摘要

Electrochemical (EC) technology plays an increasingly important role in energy and related fields, which presents significant challenges as well as opportunities for the fundamental research of electrochemistry. Electrochemical devices such as those for electrolysis (e.g., hydrogen production, chlor-alkali, aluminum), fuel cells, power batteries, energy storage batteries, often require a high working current density (such as larger than 1 A cm−2) and a high level of overpotential far from the electrochemical equilibrium (e.g., ±0.7 V). The operation conditions of such energy-conversion devices are complex and rapidly changing (e.g., the fluctuation of solar energy and wind energy at the supply end and the start and brake of electric vehicles at the consumption end of energy), and thus put extremely high requirements for the conversion efficiency, safety, and lifespan properties of devices. It is unprecedently challenging to identify efficiency, failure and safety mechanism for EC energy devices, of which one key issue is to characterize various interface structures and processes of EC devices with large-flow, high-density, and dynamically-changing charge, energy, and mass transfers. The commonly used in-situ and ex-situ characterization techniques cannot fully obtain energy, time, and space information, and it is difficult for them to characterize the key interfacial processes under real working conditions for elucidating their complicate mechanism. It is therefore imperative to develop a new generation of characterization methods and theories for energy electrochemistry. The main direction is to establish operando characterization techniques for real devices, and form a complete set of measurement system integrating the three types of ex-situ, in-situ and operando techniques for systematically detecting key intermediates, products, all components and interfaces as well as their crosstalk and coupling in real EC energy devices, thus to facilitate a comprehensive understanding of the interconnected complicate mechanism to further guide optimization and even innovation of related techniques and devices. Based on a close combination with artificial intelligence (AI), operando measurement with various spectroscopies and sensors is expected to reach each interfaces and bulks and their dynamic changes in energy devices. More importantly, it is proposed to further integrate various kinds of operando measurement modules with real-time regulation of energy devices, by which the operando data can be immediately analyzed via AI, and control decisions are made accordingly and rapidly feed back to the regulation center, so as to realize an AI-driven loop of Operando–Measurement–Analysis–Control (AI-LOMAC) of the whole real device. Integrating the three key discrete, time-consuming, and inefficient operating modules into one module is highly challenging but promising to develop into a new research paradigm, and provide an innovative pathway for the development of energy electrochemistry, interface science, and related fields, and even igniting new directions such as systems electrochemistry.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲凝琴发布了新的文献求助10
3秒前
骨科AAA完成签到 ,获得积分20
7秒前
骨科小白完成签到 ,获得积分20
15秒前
17秒前
22秒前
科研人完成签到,获得积分20
28秒前
Bin_Liu完成签到,获得积分20
38秒前
CHEN完成签到 ,获得积分10
39秒前
hhh2018687完成签到,获得积分10
40秒前
45秒前
46秒前
开拖拉机的医学僧完成签到 ,获得积分10
49秒前
无情的匪完成签到 ,获得积分10
56秒前
研友完成签到 ,获得积分10
56秒前
研友_ZzrWKZ完成签到 ,获得积分10
1分钟前
天天向上完成签到 ,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得20
1分钟前
1分钟前
hmhu完成签到,获得积分10
1分钟前
hmhu发布了新的文献求助10
1分钟前
小小王完成签到 ,获得积分10
1分钟前
1分钟前
fddd完成签到 ,获得积分10
1分钟前
紫金之巅完成签到 ,获得积分10
1分钟前
Balance Man完成签到 ,获得积分0
1分钟前
Ayn完成签到 ,获得积分10
1分钟前
呜呼啦呼完成签到 ,获得积分10
1分钟前
英俊的铭应助顺顺采纳,获得10
1分钟前
小李完成签到 ,获得积分10
2分钟前
laohu完成签到,获得积分10
2分钟前
2分钟前
lopper应助Bgeelyu采纳,获得10
2分钟前
威武画板完成签到 ,获得积分10
2分钟前
研友_Z30GJ8完成签到,获得积分0
2分钟前
Ava应助滕皓轩采纳,获得10
2分钟前
wwj1009完成签到 ,获得积分10
2分钟前
2分钟前
欣慰冬亦完成签到 ,获得积分10
2分钟前
apckkk完成签到 ,获得积分10
2分钟前
芝诺的乌龟完成签到 ,获得积分0
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318430
捐赠科研通 3060628
什么是DOI,文献DOI怎么找? 1679732
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353