Federated Deep Reinforcement Learning for Multimedia Task Offloading and Resource Allocation in MEC Networks

计算机科学 多媒体 强化学习 上传 移动边缘计算 延迟(音频) 服务器 最优化问题 移动设备 边缘计算 边缘设备 计算机网络 分布式计算 GSM演进的增强数据速率 人工智能 云计算 万维网 算法 电信 操作系统
作者
Rongqi Zhang,Chunyun Pan,Yafei Wang,Yuanyuan Yao,Xuehua Li
出处
期刊:IEICE Transactions on Communications [Institute of Electronics, Information and Communication Engineers]
卷期号:E107-B (6): 446-457 被引量:3
标识
DOI:10.23919/transcom.2023ebp3116
摘要

With maturation of 5G technology in recent years, multimedia services such as live video streaming and online games on the Internet have flourished. These multimedia services frequently require low latency, which pose a significant challenge to compute the high latency requirements multimedia tasks. Mobile edge computing (MEC), is considered a key technology solution to address the above challenges. It offloads computationintensive tasks to edge servers by sinking mobile nodes, which reduces task execution latency and relieves computing pressure on multimedia devices. In order to use MEC paradigm reasonably and efficiently, resource allocation has become a new challenge. In this paper, we focus on the multimedia tasks which need to be uploaded and processed in the network. We set the optimization problem with the goal of minimizing the latency and energy consumption required to perform tasks in multimedia devices. To solve the complex and non-convex problem, we formulate the optimization problem as a distributed deep reinforcement learning (DRL) problem and propose a federated Dueling deep Q-network (DDQN) based multimedia task offloading and resource allocation algorithm (FDRL-DDQN). In the algorithm, DRL is trained on the local device, while federated learning (FL) is responsible for aggregating and updating the parameters from the trained local models. Further, in order to solve the not identically and independently distributed (non-IID) data problem of multimedia devices, we develop a method for selecting participating federated devices. The simulation results show that the FDRL-DDQN algorithm can reduce the total cost by 31.3% compared to the DQN algorithm when the task data is 1000 kbit, and the maximum reduction can be 35.3% compared to the traditional baseline algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
yu发布了新的文献求助10
4秒前
pluto应助阿松大采纳,获得10
4秒前
情怀应助lgying采纳,获得10
5秒前
6秒前
兴奋寄容完成签到,获得积分10
7秒前
yyxx完成签到,获得积分20
7秒前
8秒前
YG123发布了新的文献求助10
8秒前
赘婿应助任性季节采纳,获得10
10秒前
zhongli完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
W1ll完成签到,获得积分10
14秒前
大模型应助coldspringhao采纳,获得10
15秒前
17秒前
kk完成签到,获得积分10
18秒前
MISA完成签到 ,获得积分10
18秒前
18秒前
领导范儿应助巧克力手印采纳,获得10
19秒前
都是发布了新的文献求助10
19秒前
志士心完成签到 ,获得积分10
20秒前
regene完成签到,获得积分10
20秒前
13完成签到,获得积分10
21秒前
caiweihong完成签到 ,获得积分10
22秒前
liumou完成签到,获得积分10
22秒前
失眠夏山完成签到,获得积分10
23秒前
FG发布了新的文献求助10
23秒前
sijiong_han完成签到,获得积分10
25秒前
yy完成签到,获得积分10
26秒前
27秒前
Liu发布了新的文献求助20
28秒前
28秒前
耀学菜菜发布了新的文献求助30
29秒前
华仔应助辛勤觅儿采纳,获得10
30秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
木木发布了新的文献求助10
32秒前
33秒前
刻苦从阳发布了新的文献求助10
34秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866520
求助须知:如何正确求助?哪些是违规求助? 3409029
关于积分的说明 10660980
捐赠科研通 3133043
什么是DOI,文献DOI怎么找? 1728015
邀请新用户注册赠送积分活动 832637
科研通“疑难数据库(出版商)”最低求助积分说明 780364