Few-shot object detection: Research advances and challenges

计算机科学 目标检测 领域(数学) 对象(语法) 过程(计算) 稀缺 人工智能 机器学习 数据科学 模式识别(心理学) 纯数学 数学 经济 微观经济学 操作系统
作者
Zhimeng Xin,Shiming Chen,Tianxu Wu,Yuanjie Shao,Weiping Ding,Xinge You
出处
期刊:Information Fusion [Elsevier BV]
卷期号:107: 102307-102307 被引量:21
标识
DOI:10.1016/j.inffus.2024.102307
摘要

Object detection as a subfield within computer vision has achieved remarkable progress, which aims to accurately identify and locate a specific object from images or videos. Such methods rely on large-scale labeled training samples for each object category to ensure accurate detection, but obtaining extensive annotated data is a labor-intensive and expensive process in many real-world scenarios. To tackle this challenge, researchers have explored few-shot object detection (FSOD) that combines few-shot learning and object detection techniques to rapidly adapt to novel objects with limited annotated samples. This paper presents a comprehensive survey to review the significant advancements in the field of FSOD in recent years and summarize the existing challenges and solutions. Specifically, we first introduce the background and definition of FSOD to emphasize potential value in advancing the field of computer vision. We then propose a novel FSOD taxonomy method and survey the plentifully remarkable FSOD algorithms based on this fact to report a comprehensive overview that facilitates a deeper understanding of the FSOD problem and the development of innovative solutions. Finally, we discuss the advantages and limitations of these algorithms to summarize the challenges, potential research direction, and development trend of object detection in the data scarcity scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霊神之殇完成签到,获得积分10
刚刚
HH完成签到,获得积分10
刚刚
ha完成签到,获得积分10
刚刚
小果果完成签到,获得积分10
刚刚
刚刚
1秒前
大方的云朵完成签到,获得积分10
1秒前
2秒前
斯文香彤完成签到,获得积分10
2秒前
欣慰小蕊完成签到,获得积分10
3秒前
3秒前
九千岁完成签到,获得积分10
3秒前
香蕉觅云应助zhuzhu采纳,获得10
3秒前
3秒前
mk_smile完成签到,获得积分10
4秒前
4秒前
NexusExplorer应助潇洒的冰烟采纳,获得10
5秒前
6秒前
6秒前
hz完成签到,获得积分10
6秒前
无头骑士完成签到,获得积分10
6秒前
lzk完成签到,获得积分10
6秒前
哈哈丫丫完成签到,获得积分10
7秒前
7秒前
7秒前
李健的小迷弟应助小马采纳,获得10
8秒前
小蘑菇应助薄年采纳,获得10
8秒前
9秒前
9秒前
9秒前
10秒前
聪慧百招发布了新的文献求助10
10秒前
火山羊发布了新的文献求助10
10秒前
10秒前
11秒前
282828完成签到 ,获得积分20
12秒前
allover完成签到,获得积分10
12秒前
张艾宇发布了新的文献求助10
13秒前
01发布了新的文献求助20
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068898
求助须知:如何正确求助?哪些是违规求助? 4290461
关于积分的说明 13367590
捐赠科研通 4110300
什么是DOI,文献DOI怎么找? 2250926
邀请新用户注册赠送积分活动 1256106
关于科研通互助平台的介绍 1188606