已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Few-shot object detection: Research advances and challenges

计算机科学 目标检测 领域(数学) 对象(语法) 过程(计算) 稀缺 人工智能 机器学习 数据科学 模式识别(心理学) 纯数学 数学 经济 微观经济学 操作系统
作者
Zhimeng Xin,Shiming Chen,Tianxu Wu,Yuanjie Shao,Weiping Ding,Xinge You
出处
期刊:Information Fusion [Elsevier BV]
卷期号:107: 102307-102307 被引量:6
标识
DOI:10.1016/j.inffus.2024.102307
摘要

Object detection as a subfield within computer vision has achieved remarkable progress, which aims to accurately identify and locate a specific object from images or videos. Such methods rely on large-scale labeled training samples for each object category to ensure accurate detection, but obtaining extensive annotated data is a labor-intensive and expensive process in many real-world scenarios. To tackle this challenge, researchers have explored few-shot object detection (FSOD) that combines few-shot learning and object detection techniques to rapidly adapt to novel objects with limited annotated samples. This paper presents a comprehensive survey to review the significant advancements in the field of FSOD in recent years and summarize the existing challenges and solutions. Specifically, we first introduce the background and definition of FSOD to emphasize potential value in advancing the field of computer vision. We then propose a novel FSOD taxonomy method and survey the plentifully remarkable FSOD algorithms based on this fact to report a comprehensive overview that facilitates a deeper understanding of the FSOD problem and the development of innovative solutions. Finally, we discuss the advantages and limitations of these algorithms to summarize the challenges, potential research direction, and development trend of object detection in the data scarcity scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
James发布了新的文献求助10
3秒前
5秒前
wanna发布了新的文献求助10
6秒前
6秒前
9秒前
10秒前
11秒前
汉堡发布了新的文献求助10
11秒前
猪猪hero应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得30
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
浩kukuyu发布了新的文献求助10
15秒前
领导范儿应助稳重的招牌采纳,获得10
15秒前
一一完成签到,获得积分10
16秒前
Lm发布了新的文献求助10
16秒前
25秒前
小小发布了新的文献求助10
30秒前
shweah2003完成签到,获得积分10
34秒前
完美世界应助SH采纳,获得10
35秒前
尛破孩完成签到,获得积分10
35秒前
40秒前
41秒前
43秒前
roaring完成签到,获得积分20
44秒前
46秒前
Akim应助北港十里巷采纳,获得10
48秒前
48秒前
少生气发布了新的文献求助10
48秒前
一一发布了新的文献求助10
50秒前
roaring发布了新的文献求助10
51秒前
bkagyin应助minguk采纳,获得10
53秒前
TUTU发布了新的文献求助10
53秒前
54秒前
58秒前
大马哈鱼发布了新的文献求助10
58秒前
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798274
求助须知:如何正确求助?哪些是违规求助? 3343710
关于积分的说明 10317375
捐赠科研通 3060458
什么是DOI,文献DOI怎么找? 1679559
邀请新用户注册赠送积分活动 806689
科研通“疑难数据库(出版商)”最低求助积分说明 763282