A deep reinforcement learning-based active suspension control algorithm considering deterministic experience tracing for autonomous vehicle

强化学习 计算机科学 追踪 稳健性(进化) 一般化 人工智能 过程(计算) 机器学习 数学 生物化学 基因 操作系统 数学分析 化学
作者
Cheng Wang,Xiaoxian Cui,Shijie Zhao,Xinran Zhou,Yaqi Song,Yang Wang,Konghui Guo
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:153: 111259-111259 被引量:13
标识
DOI:10.1016/j.asoc.2024.111259
摘要

As the challenges in autonomous driving become more complex and changing, traditional methods are struggling to cope. As a result, artificial intelligence (AI) techniques have gained widespread attention due to their potential in addressing these challenges. To investigate the application and performance of deep reinforcement learning (DRL) techniques in vertical control of autonomous vehicles, we propose an active suspension control algorithm that incorporates deterministic experience tracing (DET). The agent explores and learns deterministic policies by interacting with the environment and continuously exploring and exploiting the generated data. During this process, DET stores state and action data in a separate experience memory buffer over time. Additionally, DET processes this information into auxiliary rewards that decay based on temporal logic. This drives the agent to self-iterate and rapidly improve. DET allows AI techniques to incorporate temporal robustness into data-driven learning, resulting in improved generalization performance and optimized ride comfort in engineering applications. Simulation results demonstrated that DET improved control performance by 74.92%, 64.20%, and 54.64% compared to the deep deterministic policy gradient (DDPG), twin delayed deep deterministic policy gradient (TD3), and model predictive control (MPC) baselines, respectively. Furthermore, it achieved nearly a 90% improvement in ride comfort on random roads in classes A, B, and C across different speeds. Even on class D roads, the optimization remained around 85%, demonstrating its excellent generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stephencurry发布了新的文献求助30
刚刚
pp发布了新的文献求助10
1秒前
1秒前
Orange应助爱笑的谷云采纳,获得10
1秒前
huoguo完成签到 ,获得积分10
1秒前
slim完成签到 ,获得积分10
2秒前
Veronica完成签到 ,获得积分10
2秒前
sh完成签到,获得积分10
4秒前
yzhilson完成签到 ,获得积分0
4秒前
刘亿完成签到,获得积分10
5秒前
猪肉超人菜婴蚊完成签到,获得积分10
6秒前
爆米花应助Light采纳,获得10
7秒前
深情安青应助cl采纳,获得10
9秒前
ccc完成签到 ,获得积分10
10秒前
hsjsk完成签到,获得积分10
10秒前
飘逸皮卡丘完成签到,获得积分10
11秒前
13秒前
13秒前
光电效应完成签到,获得积分10
15秒前
爱笑的谷云完成签到,获得积分20
15秒前
晨纯完成签到 ,获得积分10
15秒前
穆尘完成签到,获得积分10
16秒前
郑小七完成签到,获得积分10
16秒前
Akiba完成签到,获得积分10
16秒前
17秒前
耿继生完成签到,获得积分10
18秒前
19秒前
zozox完成签到 ,获得积分10
19秒前
满意的柏柳完成签到 ,获得积分10
20秒前
季夏发布了新的文献求助10
20秒前
静静完成签到 ,获得积分10
20秒前
FRIGHTINGx完成签到 ,获得积分10
21秒前
性感母蟑螂完成签到 ,获得积分10
21秒前
21秒前
充电宝应助wwpedd采纳,获得10
22秒前
22秒前
24秒前
大个应助哦哦采纳,获得10
26秒前
26秒前
酒温书生发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307071
求助须知:如何正确求助?哪些是违规求助? 4452821
关于积分的说明 13855266
捐赠科研通 4340389
什么是DOI,文献DOI怎么找? 2383146
邀请新用户注册赠送积分活动 1378006
关于科研通互助平台的介绍 1345825