锌
涂层
阳极
复合数
法拉第效率
电解质
聚偏氟乙烯
阴极
聚合物
材料科学
插层(化学)
化学工程
冶金
化学
复合材料
无机化学
电极
工程类
物理化学
作者
Weijing Wu,Yuanfu Deng,Guohua Chen
标识
DOI:10.1016/j.cclet.2023.108424
摘要
There are some critical issues hindering the practical applications of aqueous zinc-ion batteries (ZIBs), although they possess high safety and low cost as one of promising energy storge devices, such as the Zn dendrite growth and the by-product of Zn4SO4(OH)6·xH2O (ZHS) resulted from some side reactions in a mild electrolyte. Herein, a compact and self-repairing solid electrolyte interface (SEI) film, as labeled the PVDF-Zn(TFSI)2-ZHS coating [The PVDF and Zn(TFSI)2 are polyvinylidene fluoride and zinc bis(trifluoromethanesulfonyl)imide, respectively], which turns the in-situ generated ZHS into a beneficial ingredient onto the pre-coated PVDF-based composite coating layer containing Zn(TFSI)2, was designed and fabricated by a simple doctor blade method. It is shown that the SEI layer can effectively isolate Zn from the electrolyte and homogenize the Zn2+ flux, and thus effectively suppress side reactions and dendrites growth. Benefiting from the hybrid SEI layer, a symmetric cell exhibits a high cycling stability over 750 h at 2.0 mA/cm2 and 2.0 mAh/cm2, and meanwhile, a full-cell, coupled with K+ pre-intercalation α-MnO2 (KMO) cathode, displays excellent rate performance, stable coulombic efficiency and an acceptable cycle life. This work provides a feasible approach for simple and scalable modification of Zn anodes to achieve high performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI