已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting the future risk of lung cancer: development, and internal and external validation of the CanPredict (lung) model in 19·67 million people and evaluation of model performance against seven other risk prediction models

医学 肺癌 队列 人口 癌症 内科学 肺癌筛查 队列研究 回顾性队列研究 比例危险模型 前列腺癌 全国肺筛查试验 入射(几何) 风险评估 肿瘤科 环境卫生 物理 计算机安全 计算机科学 光学
作者
Weiqi Liao,Carol Coupland,Judith Burchardt,David Baldwin,Fergus Gleeson,Julia Hippisley‐Cox,Fergus Gleeson,David Baldwin,George Batchkala,James Buchanan,Judith Burchardt,Rohan Chakraborty,R Chana,Yan Chen,Carol Coupland,Charles Crichton,Jim Davies,Anand Devaraj,Mengran Fan,Julia Hippisley‐Cox
出处
期刊:The Lancet Respiratory Medicine [Elsevier BV]
卷期号:11 (8): 685-697 被引量:48
标识
DOI:10.1016/s2213-2600(23)00050-4
摘要

Background Lung cancer is the second most common cancer in incidence and the leading cause of cancer deaths worldwide.Meanwhile, lung cancer screening with low-dose CT can reduce mortality.The UK National Screening Committee recommended targeted lung cancer screening on Sept 29, 2022, and asked for more modelling work to be done to help refine the recommendation.This study aims to develop and validate a risk prediction model-the CanPredict (lung) model-for lung cancer screening in the UK and compare the model performance against seven other risk prediction models.Methods For this retrospective, population-based, cohort study, we used linked electronic health records from two English primary care databases: QResearch (Jan 1, 2005-March 31, 2020) and Clinical Practice Research Datalink (CPRD) Gold (Jan 1, 2004-Jan 1, 2015).The primary study outcome was an incident diagnosis of lung cancer.We used a Cox proportional-hazards model in the derivation cohort (12•99 million individuals aged 25-84 years from the QResearch database) to develop the CanPredict (lung) model in men and women.We used discrimination measures (Harrell's C statistic, D statistic, and the explained variation in time to diagnosis of lung cancer [R ² D ]) and calibration plots to evaluate model performance by sex and ethnicity, using data from QResearch (4•14 million people for internal validation) and CPRD (2•54 million for external validation).Seven models for predicting lung cancer risk (Liverpool Lung Project [LLP] v2 , LLP v3 , Lung Cancer Risk Assessment Tool [LCRAT], Prostate, Lung, Colorectal, and Ovarian [PLCO] M2012 , PLCO M2014 , Pittsburgh, and Bach) were selected to compare their model performance with the CanPredict (lung) model using two approaches: (1) in ever-smokers aged 55-74 years (the population recommended for lung cancer screening in the UK), and (2) in the populations for each model determined by that model's eligibility criteria.Findings There were 73 380 incident lung cancer cases in the QResearch derivation cohort, 22 838 cases in the QResearch internal validation cohort, and 16 145 cases in the CPRD external validation cohort during follow-up.The predictors in the final model included sociodemographic characteristics (age, sex, ethnicity, Townsend score), lifestyle factors (BMI, smoking and alcohol status), comorbidities, family history of lung cancer, and personal history of other cancers.Some predictors were different between the models for women and men, but model performance was similar between sexes.The CanPredict (lung) model showed excellent discrimination and calibration in both internal and external validation of the full model, by sex and ethnicity.The model explained 65% of the variation in time to diagnosis of lung cancer in both sexes in the QResearch validation cohort and 59% of the R ² D in both sexes in the CPRD validation cohort.Harrell's C statistics were 0•90 in the QResearch (validation) cohort and 0•87 in the CPRD cohort, and the D statistics were 2•8 in the QResearch (validation) cohort and 2•4 in the CPRD cohort.Compared with seven other lung cancer prediction models, the CanPredict (lung) model had the best performance in discrimination, calibration, and net benefit across three prediction horizons (5, 6, and 10 years) in the two approaches.The CanPredict (lung) model also had higher sensitivity than the current UK recommended models (LLP v2 and PLCO M2012 ), as it identified more lung cancer cases than those models by screening the same amount of individuals at high risk.Interpretation The CanPredict (lung) model was developed, and internally and externally validated, using data from 19•67 million people from two English primary care databases.Our model has potential utility for risk stratification of the UK primary care population and selection of individuals at high risk of lung cancer for targeted screening.If our model is recommended to be implemented in primary care, each individual's risk can be calculated using information in the primary care electronic health records, and people at high risk can be identified for the lung cancer screening programme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尔东发布了新的文献求助10
1秒前
2秒前
周少完成签到,获得积分10
2秒前
TFoCR7发布了新的文献求助50
2秒前
cpqiu发布了新的文献求助10
2秒前
Rita应助赵Zhao采纳,获得10
3秒前
寒冷的青筠完成签到 ,获得积分10
7秒前
倪侃发布了新的文献求助10
8秒前
S杨发布了新的文献求助10
8秒前
阔口阔落完成签到,获得积分10
9秒前
10秒前
阿绿完成签到 ,获得积分10
11秒前
12秒前
14秒前
CodeCraft应助聪明的青雪采纳,获得10
15秒前
小蘑菇应助515采纳,获得10
15秒前
虫子发布了新的文献求助10
16秒前
cony发布了新的文献求助10
17秒前
18秒前
着急的青枫应助今我来思采纳,获得10
18秒前
无花果应助给好评采纳,获得10
18秒前
HESOYAM发布了新的文献求助10
19秒前
馆长应助Geoer采纳,获得30
20秒前
CC完成签到 ,获得积分10
24秒前
25秒前
一名路过的靓仔完成签到,获得积分10
25秒前
25秒前
缪静柏发布了新的文献求助10
26秒前
小余完成签到 ,获得积分10
26秒前
26秒前
万能图书馆应助懒得可爱采纳,获得10
28秒前
裴之洽闻发布了新的文献求助10
29秒前
给好评发布了新的文献求助10
30秒前
30秒前
30秒前
所所应助徐妮采纳,获得10
30秒前
30秒前
乐乐应助LiuYang采纳,获得10
31秒前
YR发布了新的文献求助10
33秒前
王饱饱发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4832916
求助须知:如何正确求助?哪些是违规求助? 4137443
关于积分的说明 12806626
捐赠科研通 3880642
什么是DOI,文献DOI怎么找? 2134302
邀请新用户注册赠送积分活动 1154392
关于科研通互助平台的介绍 1052919