Predicting the future risk of lung cancer: development, and internal and external validation of the CanPredict (lung) model in 19·67 million people and evaluation of model performance against seven other risk prediction models

医学 肺癌 队列 人口 癌症 内科学 肺癌筛查 队列研究 回顾性队列研究 比例危险模型 前列腺癌 全国肺筛查试验 入射(几何) 风险评估 肿瘤科 环境卫生 物理 计算机安全 计算机科学 光学
作者
Weiqi Liao,Carol Coupland,Judith Burchardt,David Baldwin,Fergus Gleeson,Julia Hippisley‐Cox,Fergus Gleeson,David Baldwin,George Batchkala,James Buchanan,Judith Burchardt,Rohan Chakraborty,R Chana,Yan Chen,Carol Coupland,Charles Crichton,Jim Davies,Anand Devaraj,Mengran Fan,Julia Hippisley‐Cox
出处
期刊:The Lancet Respiratory Medicine [Elsevier BV]
卷期号:11 (8): 685-697 被引量:36
标识
DOI:10.1016/s2213-2600(23)00050-4
摘要

Background Lung cancer is the second most common cancer in incidence and the leading cause of cancer deaths worldwide.Meanwhile, lung cancer screening with low-dose CT can reduce mortality.The UK National Screening Committee recommended targeted lung cancer screening on Sept 29, 2022, and asked for more modelling work to be done to help refine the recommendation.This study aims to develop and validate a risk prediction model-the CanPredict (lung) model-for lung cancer screening in the UK and compare the model performance against seven other risk prediction models.Methods For this retrospective, population-based, cohort study, we used linked electronic health records from two English primary care databases: QResearch (Jan 1, 2005-March 31, 2020) and Clinical Practice Research Datalink (CPRD) Gold (Jan 1, 2004-Jan 1, 2015).The primary study outcome was an incident diagnosis of lung cancer.We used a Cox proportional-hazards model in the derivation cohort (12•99 million individuals aged 25-84 years from the QResearch database) to develop the CanPredict (lung) model in men and women.We used discrimination measures (Harrell's C statistic, D statistic, and the explained variation in time to diagnosis of lung cancer [R ² D ]) and calibration plots to evaluate model performance by sex and ethnicity, using data from QResearch (4•14 million people for internal validation) and CPRD (2•54 million for external validation).Seven models for predicting lung cancer risk (Liverpool Lung Project [LLP] v2 , LLP v3 , Lung Cancer Risk Assessment Tool [LCRAT], Prostate, Lung, Colorectal, and Ovarian [PLCO] M2012 , PLCO M2014 , Pittsburgh, and Bach) were selected to compare their model performance with the CanPredict (lung) model using two approaches: (1) in ever-smokers aged 55-74 years (the population recommended for lung cancer screening in the UK), and (2) in the populations for each model determined by that model's eligibility criteria.Findings There were 73 380 incident lung cancer cases in the QResearch derivation cohort, 22 838 cases in the QResearch internal validation cohort, and 16 145 cases in the CPRD external validation cohort during follow-up.The predictors in the final model included sociodemographic characteristics (age, sex, ethnicity, Townsend score), lifestyle factors (BMI, smoking and alcohol status), comorbidities, family history of lung cancer, and personal history of other cancers.Some predictors were different between the models for women and men, but model performance was similar between sexes.The CanPredict (lung) model showed excellent discrimination and calibration in both internal and external validation of the full model, by sex and ethnicity.The model explained 65% of the variation in time to diagnosis of lung cancer in both sexes in the QResearch validation cohort and 59% of the R ² D in both sexes in the CPRD validation cohort.Harrell's C statistics were 0•90 in the QResearch (validation) cohort and 0•87 in the CPRD cohort, and the D statistics were 2•8 in the QResearch (validation) cohort and 2•4 in the CPRD cohort.Compared with seven other lung cancer prediction models, the CanPredict (lung) model had the best performance in discrimination, calibration, and net benefit across three prediction horizons (5, 6, and 10 years) in the two approaches.The CanPredict (lung) model also had higher sensitivity than the current UK recommended models (LLP v2 and PLCO M2012 ), as it identified more lung cancer cases than those models by screening the same amount of individuals at high risk.Interpretation The CanPredict (lung) model was developed, and internally and externally validated, using data from 19•67 million people from two English primary care databases.Our model has potential utility for risk stratification of the UK primary care population and selection of individuals at high risk of lung cancer for targeted screening.If our model is recommended to be implemented in primary care, each individual's risk can be calculated using information in the primary care electronic health records, and people at high risk can be identified for the lung cancer screening programme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动漫大师发布了新的文献求助10
3秒前
飘逸踏歌完成签到,获得积分0
9秒前
安静的幼旋完成签到,获得积分20
10秒前
爆米花应助00采纳,获得10
11秒前
修辛发布了新的文献求助10
15秒前
16秒前
17秒前
小二郎应助你hao采纳,获得10
18秒前
19秒前
zzzzz完成签到 ,获得积分10
19秒前
20秒前
小蘑菇应助52pry采纳,获得10
22秒前
Wizard发布了新的文献求助10
22秒前
112发布了新的文献求助10
22秒前
FSF完成签到,获得积分10
22秒前
tcf发布了新的文献求助10
23秒前
充电宝应助Bonnienuit采纳,获得10
23秒前
23秒前
24秒前
24秒前
七七完成签到,获得积分10
25秒前
孙子钊发布了新的文献求助10
26秒前
小豪发布了新的文献求助10
27秒前
土豪的铭完成签到,获得积分10
29秒前
29秒前
你hao发布了新的文献求助10
29秒前
kingcoming发布了新的文献求助10
30秒前
上官若男应助细腻的山水采纳,获得10
31秒前
112完成签到,获得积分10
32秒前
32秒前
和平发展完成签到,获得积分10
32秒前
小菜鸡一枚完成签到,获得积分10
33秒前
miumiu发布了新的文献求助10
35秒前
35秒前
你hao完成签到,获得积分10
37秒前
38秒前
李健应助miumiu采纳,获得10
38秒前
科研通AI5应助小豪采纳,获得10
39秒前
40秒前
荔枝完成签到 ,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780526
求助须知:如何正确求助?哪些是违规求助? 3326007
关于积分的说明 10225152
捐赠科研通 3041089
什么是DOI,文献DOI怎么找? 1669166
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669