Tribological investigations of water-based lubricants for application in the deep drawing process

润滑油 摩擦学 润滑 材料科学 背景(考古学) 拉深 干润滑剂 金属薄板 润滑性 过程(计算) 矿物油 复合材料 冶金 机械工程 计算机科学 工程类 地质学 操作系统 古生物学
作者
Bernd‐Arno Behrens,S Simon Hübner,J. Wehmeyer,Paul Müller,S Yarcu
出处
期刊:IOP conference series [IOP Publishing]
卷期号:1307 (1): 012001-012001 被引量:1
标识
DOI:10.1088/1757-899x/1307/1/012001
摘要

Abstract This paper describes the tribological investigation of water-based lubricants in the context of a deep drawing process. Therefore, different methods were conducted in order to determinate the suitability of these lubricants for a deep drawing process. Three lubricant manufacturers each provided their lubricants as part of this work. The sheet materials investigated are an aluminum material (AA6014) and two steel materials (DC04, DP800), each with a thickness of 1.5 mm. All sheet materials were examined in the as-delivered condition as part of this work. The hypothesis for this research proposal is that it is possible to achieve comparable tribological properties in sheet metal forming using water-based lubricants as when using mineral oil-based lubricants. The aim is to optimize a tribological system for water-based lubricants when used as additional lubrication in order to replace mineral oil-based lubricants and, as a result, to shorten the representative process chain by one process step (cleaning). In the course of this work, topographical measurements of the sheet materials were carried out in order to investigate the lubricant holding capacity of the sheet materials. Furthermore, strip drawing tests were performed to determine the friction coefficients of the different lubricant-sheet combinations. The final step was to conduct deep-drawing tests to determine the limits of use of the water-based lubricants by continuously increasing the holding-down force.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHENCHEN发布了新的文献求助10
1秒前
1秒前
Shirky发布了新的文献求助10
1秒前
yu完成签到,获得积分10
1秒前
2秒前
3秒前
这样挺好的完成签到,获得积分20
3秒前
4秒前
jjjjjj发布了新的文献求助10
6秒前
7秒前
星辰大海应助苍耳采纳,获得10
7秒前
陈饱饱发布了新的文献求助10
7秒前
SCINEXUS完成签到,获得积分0
7秒前
9秒前
9秒前
CodeCraft应助kk采纳,获得10
9秒前
10秒前
昵称呢发布了新的文献求助10
10秒前
lulala发布了新的文献求助10
10秒前
科目三应助小杭76采纳,获得10
11秒前
11秒前
王晓朋完成签到,获得积分10
11秒前
Lucas应助稳重含芙采纳,获得10
12秒前
周生龙发布了新的文献求助10
13秒前
动听千山发布了新的文献求助10
13秒前
言希完成签到 ,获得积分20
13秒前
13秒前
量子星尘发布了新的文献求助20
14秒前
16秒前
杨念心发布了新的文献求助10
16秒前
英勇的幻露完成签到,获得积分10
16秒前
pky完成签到,获得积分10
17秒前
yznfly应助周生龙采纳,获得10
18秒前
usr123完成签到 ,获得积分10
19秒前
薏米人儿发布了新的文献求助10
19秒前
19秒前
susu发布了新的文献求助30
19秒前
21秒前
杨念心完成签到,获得积分20
22秒前
吴兰田完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472024
求助须知:如何正确求助?哪些是违规求助? 4574443
关于积分的说明 14346268
捐赠科研通 4501776
什么是DOI,文献DOI怎么找? 2466542
邀请新用户注册赠送积分活动 1454639
关于科研通互助平台的介绍 1429131