A Learning-Assisted Bi-Population Evolutionary Algorithm for Distributed Flexible Job-Shop Scheduling With Maintenance Decisions

计算机科学 进化算法 作业车间调度 人口 进化计算 调度(生产过程) 数学优化 人工智能 算法 分布式计算 机器学习 数学 地铁列车时刻表 操作系统 社会学 人口学
作者
Qi Yan,Hongfeng Wang,Shengxiang Yang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:29 (5): 1795-1806 被引量:16
标识
DOI:10.1109/tevc.2024.3400043
摘要

In the post-pandemic era, more manufacturers have expedited the shift from centralized to distributed manufacturing to enhance supply chain resilience. Along with this, the distributed shop floor scheduling problem has attracted much attention from academia, one of which is the distributed flexible job-shop scheduling problem (DFJSP). Nonetheless, the majority of research on DFJSPs overlooks crucial real-world necessities, such as multi-objective decision making and preventive maintenance (PM). Thus, this article suggests a multi-objective DFJSP with PM (DFJSP/PM) as a new variant of the DFJSP. The aim is to achieve a trade-off between production and maintenance to minimize the makespan, maintenance cost, and energy consumption. To this end, we establish a mathematical model and then customize a learning-assisted bi-population evolutionary algorithm (LBPEA) to solve it. In LBPEA, a novel encoding mechanism is proposed to initialize the population randomly. Then, a neighborhood search heuristic is designed to enhance the population's quality. To balance the convergence and diversity of the population, a bi-population evolution idea is introduced during the environmental selection. Besides, a two-stage local search (LS) process is adaptively triggered to balance the allocation of computational resources between exploration and exploitation. At the first stage, a reinforcement learning mechanism is employed to intelligently select LS operators to adjust either the operations' sequence or assignment to different factories and machines, while the second stage is to adjust the number and placement of maintenance decisions. Experimental results show that LBPEA has excellent performance in terms of convergence and diversity when solving the proposed multi-objective DFJSP/PM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lglsp发布了新的文献求助10
1秒前
脑洞疼应助xuanjiawu采纳,获得10
1秒前
2秒前
晫猗完成签到,获得积分10
2秒前
2秒前
meng完成签到,获得积分10
3秒前
zzznznnn发布了新的文献求助10
4秒前
伶俐怀亦发布了新的文献求助10
6秒前
6秒前
124完成签到 ,获得积分10
6秒前
7秒前
不爱吃鱼完成签到 ,获得积分10
8秒前
YAYA发布了新的文献求助10
9秒前
充电宝应助wenbo采纳,获得10
10秒前
万能图书馆应助孙傲采纳,获得10
10秒前
瓜瓜发布了新的文献求助10
11秒前
五原日落完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
小翼应助lxj采纳,获得10
12秒前
14秒前
小马发布了新的文献求助30
14秒前
MQueen完成签到,获得积分10
14秒前
Riggle G完成签到,获得积分0
15秒前
jim完成签到 ,获得积分10
15秒前
宇森完成签到,获得积分10
15秒前
Homura完成签到,获得积分10
15秒前
任全强完成签到,获得积分10
18秒前
西柚完成签到,获得积分10
19秒前
20秒前
包凡之完成签到,获得积分10
20秒前
20秒前
领导范儿应助mk91采纳,获得10
22秒前
江逾白完成签到,获得积分10
23秒前
23秒前
24秒前
wsx发布了新的文献求助30
25秒前
25秒前
大模型应助铭仔采纳,获得10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851