A Learning-Assisted Bi-Population Evolutionary Algorithm for Distributed Flexible Job-Shop Scheduling With Maintenance Decisions

计算机科学 进化算法 作业车间调度 人口 进化计算 调度(生产过程) 数学优化 人工智能 算法 分布式计算 机器学习 数学 地铁列车时刻表 操作系统 社会学 人口学
作者
Qi Yan,Hongfeng Wang,Shengxiang Yang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tevc.2024.3400043
摘要

In the post-pandemic era, more manufacturers have expedited the shift from centralized to distributed manufacturing to enhance supply chain resilience. Along with this, the distributed shop floor scheduling problem has attracted much attention from academia, one of which is the distributed flexible job-shop scheduling problem (DFJSP). Nonetheless, the majority of research on DFJSPs overlooks crucial real-world necessities, such as multi-objective decision making and preventive maintenance (PM). Thus, this article suggests a multi-objective DFJSP with PM (DFJSP/PM) as a new variant of the DFJSP. The aim is to achieve a trade-off between production and maintenance to minimize the makespan, maintenance cost, and energy consumption. To this end, we establish a mathematical model and then customize a learning-assisted bi-population evolutionary algorithm (LBPEA) to solve it. In LBPEA, a novel encoding mechanism is proposed to initialize the population randomly. Then, a neighborhood search heuristic is designed to enhance the population's quality. To balance the convergence and diversity of the population, a bi-population evolution idea is introduced during the environmental selection. Besides, a two-stage local search (LS) process is adaptively triggered to balance the allocation of computational resources between exploration and exploitation. At the first stage, a reinforcement learning mechanism is employed to intelligently select LS operators to adjust either the operations' sequence or assignment to different factories and machines, while the second stage is to adjust the number and placement of maintenance decisions. Experimental results show that LBPEA has excellent performance in terms of convergence and diversity when solving the proposed multi-objective DFJSP/PM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李爱国应助人间采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
luminous发布了新的文献求助10
3秒前
自由飞翔完成签到,获得积分10
3秒前
4秒前
Xixi发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
侯崇宁完成签到,获得积分20
6秒前
Niniiii应助愉快的芒果采纳,获得10
6秒前
6秒前
7秒前
李桥溪发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
capx发布了新的文献求助10
7秒前
张张发布了新的文献求助10
7秒前
研友_VZG7GZ应助龙辉采纳,获得10
7秒前
酷雅的小跟班应助00采纳,获得10
8秒前
can发布了新的文献求助10
8秒前
9秒前
10秒前
梨里发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
上官若男应助jilingfenghuang采纳,获得10
11秒前
12秒前
小徐发布了新的文献求助10
12秒前
elgar612发布了新的文献求助10
12秒前
南屿发布了新的文献求助10
14秒前
Bella发布了新的文献求助30
14秒前
传奇3应助舒适藏今采纳,获得30
14秒前
miao给优雅的紫寒的求助进行了留言
16秒前
江江江完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4664065
求助须知:如何正确求助?哪些是违规求助? 4045593
关于积分的说明 12513772
捐赠科研通 3738126
什么是DOI,文献DOI怎么找? 2064331
邀请新用户注册赠送积分活动 1093956
科研通“疑难数据库(出版商)”最低求助积分说明 974499