亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Learning-Assisted Bi-Population Evolutionary Algorithm for Distributed Flexible Job-Shop Scheduling With Maintenance Decisions

计算机科学 进化算法 作业车间调度 人口 进化计算 调度(生产过程) 数学优化 人工智能 算法 分布式计算 机器学习 数学 地铁列车时刻表 操作系统 社会学 人口学
作者
Qi Yan,Hongfeng Wang,Shengxiang Yang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tevc.2024.3400043
摘要

In the post-pandemic era, more manufacturers have expedited the shift from centralized to distributed manufacturing to enhance supply chain resilience. Along with this, the distributed shop floor scheduling problem has attracted much attention from academia, one of which is the distributed flexible job-shop scheduling problem (DFJSP). Nonetheless, the majority of research on DFJSPs overlooks crucial real-world necessities, such as multi-objective decision making and preventive maintenance (PM). Thus, this article suggests a multi-objective DFJSP with PM (DFJSP/PM) as a new variant of the DFJSP. The aim is to achieve a trade-off between production and maintenance to minimize the makespan, maintenance cost, and energy consumption. To this end, we establish a mathematical model and then customize a learning-assisted bi-population evolutionary algorithm (LBPEA) to solve it. In LBPEA, a novel encoding mechanism is proposed to initialize the population randomly. Then, a neighborhood search heuristic is designed to enhance the population's quality. To balance the convergence and diversity of the population, a bi-population evolution idea is introduced during the environmental selection. Besides, a two-stage local search (LS) process is adaptively triggered to balance the allocation of computational resources between exploration and exploitation. At the first stage, a reinforcement learning mechanism is employed to intelligently select LS operators to adjust either the operations' sequence or assignment to different factories and machines, while the second stage is to adjust the number and placement of maintenance decisions. Experimental results show that LBPEA has excellent performance in terms of convergence and diversity when solving the proposed multi-objective DFJSP/PM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光合作用完成签到,获得积分10
2秒前
Chi完成签到 ,获得积分20
18秒前
Chi关注了科研通微信公众号
25秒前
甜美的秋尽完成签到,获得积分10
30秒前
32秒前
36秒前
Chi发布了新的文献求助60
38秒前
sunday2024完成签到,获得积分10
43秒前
Akim应助一个小胖子采纳,获得10
46秒前
1分钟前
liam发布了新的文献求助10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
科研通AI5应助liam采纳,获得10
1分钟前
2分钟前
2分钟前
一个小胖子完成签到,获得积分10
2分钟前
YifanWang应助一个小胖子采纳,获得10
3分钟前
草木发布了新的文献求助10
3分钟前
3分钟前
YifanWang应助一个小胖子采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
maggiexjl完成签到,获得积分10
3分钟前
liam发布了新的文献求助10
3分钟前
草木发布了新的文献求助10
3分钟前
YifanWang应助一个小胖子采纳,获得10
3分钟前
juan完成签到 ,获得积分10
3分钟前
来日昭昭应助一个小胖子采纳,获得10
3分钟前
大个应助一个小胖子采纳,获得10
4分钟前
科研通AI5应助liam采纳,获得10
4分钟前
刘刘完成签到 ,获得积分10
4分钟前
敉_发布了新的文献求助10
4分钟前
5分钟前
下午好完成签到 ,获得积分10
5分钟前
cadcae完成签到,获得积分10
6分钟前
风华正茂完成签到,获得积分10
6分钟前
千里草完成签到,获得积分10
6分钟前
科研通AI5应助旅梦采纳,获得10
7分钟前
iorpi驳回了852应助
7分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837486
求助须知:如何正确求助?哪些是违规求助? 3379589
关于积分的说明 10509939
捐赠科研通 3099208
什么是DOI,文献DOI怎么找? 1707000
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772586