Data Extraction and Curation from Radiology Reports for Pancreatic Cyst Surveillance Using Large Language Models

医学 数据提取 胰腺囊肿 囊肿 萃取(化学) 放射科 医学物理学 梅德林 色谱法 化学 政治学 法学
作者
Ankur P. Choubey,Emanuel Eguia,A. Hollingsworth,Subrata Chatterjee,Michael I. D’Angelica,William R. Jarnagin,Alice C. Wei,Mark Schattner,Richard Kinh Gian,Kevin C. Soares
出处
期刊:Journal of The American College of Surgeons [Elsevier]
卷期号:241 (5): 766-772
标识
DOI:10.1097/xcs.0000000000001478
摘要

BACKGROUND: Manual curation of radiographic features in pancreatic cyst registries for data abstraction and longitudinal evaluation is time-consuming and limits widespread implementation. We examined the feasibility and accuracy of using large language models (LLMs) to extract clinical variables from radiology reports. STUDY DESIGN: A single-center retrospective study included patients under surveillance for pancreatic cysts. Nine radiographic elements used to monitor cyst progression were included: cyst size, main pancreatic duct (MPD) size (continuous variable), number of lesions, MPD dilation 5 mmol/L or more (categorical), branch duct dilation, presence of solid component, calcific lesion, pancreatic atrophy, and pancreatitis. LLMs (generative pretrained transformer [GPT]) on the OpenAI GPT-4 platform were used to extract elements of interest with a zero-shot learning approach using prompting to facilitate annotation without any training data. A manually annotated institutional cyst database was used as the ground truth for comparison. RESULTS: Overall, 3,198 longitudinal scans from 991 patients were included. GPT successfully extracted the selected radiographic elements with high accuracy. Among categorical variables, accuracy ranged from 97% for solid component to 99% for calcific lesions. In the continuous variables, accuracy varied from 92% for cyst size to 97% for MPD size. However, Cohen’s kappa was higher for cyst size (0.92) compared with that for MPD size (0.82). Lowest accuracy (81%) was noted in the multiclass variable for a number of cysts. CONCLUSIONS: LLM can accurately extract and curate data from radiology reports for pancreatic cyst surveillance and can be reliably used to assemble longitudinal databases. Future application of this work can potentiate the development of artificial intelligence–based surveillance models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木林森幻完成签到,获得积分10
刚刚
半农应助上山的吗喽采纳,获得50
刚刚
赵小胖完成签到,获得积分10
刚刚
张德帅完成签到,获得积分10
刚刚
健康的人生完成签到,获得积分10
刚刚
shen发布了新的文献求助30
刚刚
胡大嘴先生完成签到,获得积分10
1秒前
ada完成签到,获得积分10
1秒前
F123456完成签到,获得积分10
1秒前
1秒前
le完成签到,获得积分10
1秒前
1秒前
时长两年半完成签到,获得积分10
2秒前
kkk12245完成签到,获得积分20
2秒前
儒雅的山河完成签到 ,获得积分10
2秒前
2秒前
LWJ发布了新的文献求助10
2秒前
千空完成签到 ,获得积分10
2秒前
3秒前
E1gb发布了新的文献求助50
3秒前
要减肥的小馒头完成签到 ,获得积分10
3秒前
gfydsl发布了新的文献求助10
4秒前
4秒前
4秒前
一颗咸蛋黄完成签到 ,获得积分10
4秒前
zty完成签到,获得积分10
4秒前
5秒前
纳斯达克完成签到,获得积分10
5秒前
耕云钓月完成签到,获得积分10
5秒前
6秒前
子川完成签到,获得积分10
6秒前
xinwang发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
夜瞳完成签到,获得积分10
6秒前
7秒前
慈祥的煎蛋完成签到,获得积分10
7秒前
Owen应助酷炫傲安采纳,获得10
7秒前
乐乐应助小白鼠采纳,获得30
7秒前
在水一方应助高贵煎蛋采纳,获得50
7秒前
壮观以松发布了新的文献求助30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651723
求助须知:如何正确求助?哪些是违规求助? 4785782
关于积分的说明 15055712
捐赠科研通 4810402
什么是DOI,文献DOI怎么找? 2573132
邀请新用户注册赠送积分活动 1529020
关于科研通互助平台的介绍 1488014