Physics-informed super-resolution and forecasting method based on inaccurate partial differential equations and partial observation

物理 偏微分方程 分辨率(逻辑) 一阶偏微分方程 统计物理学 应用数学 量子力学 人工智能 数学 计算机科学
作者
Haodong Feng,Peiyan Hu,Yue Wang,Dixia Fan,Tailin Wu,Yuzhong Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (6)
标识
DOI:10.1063/5.0276721
摘要

Physics-informed machine learning has emerged as a promising approach for modeling physical systems. However, real-world applications often face significant challenges due to the limitations of partial observations and inaccuracies in governing partial differential equations (PDEs). In this work, we propose a novel physics-informed machine learning method named Physics-Informed method based on Inaccurate PDEs and Partial Observation (PIPO), to overcome the above two challenges under the real-world scenario, which aims to address the problems of super-resolution and forecasting simultaneously in physical systems characterized by partial observations and inaccurate PDEs. The proposed method is motivated by two key considerations. First, despite the inherent inaccuracy of PDEs, the differential terms (such as diffusion and advection terms) contain valuable information that can effectively reduce the hypothesis space, thereby enhancing the model's generalization capability. Second, while the data only provides partial observations, it offers crucial supervised constraints at the observed points. These constraints not only facilitate model optimization but also help prevent the degeneracy of PDE loss, where the PDE loss could yield multiple solutions. PIPO integrates an interpolator, encoder, forecaster, decoder, and parameters learner, which are jointly optimized using data loss and PDE losses to reconstruct high-resolution states and forecast future states using only partial observation data and inaccurate PDEs. We leverage the proposed PIPO method to address a real-world problem in air pollutant concentration fields and wind fields, specifically PM2.5 transport dynamics, which are governed by the advection-diffusion equation with unknown diffusion coefficients and the source term. The results in super-resolution reconstruction, forecasting, and multi-hour forecasting highlight the effectiveness of PIPO in capturing complex spatial and temporal dynamics despite the limitations of partial observations and inaccurate PDEs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助偷偷吃块肉采纳,获得10
1秒前
1秒前
Jasper应助JJ采纳,获得10
1秒前
Jammie完成签到,获得积分10
1秒前
SciGPT应助hu采纳,获得10
1秒前
香菜发布了新的文献求助10
2秒前
念姬完成签到 ,获得积分10
2秒前
JamesPei应助酷酷的山雁采纳,获得10
2秒前
2秒前
爆米花应助SSSSHANDY采纳,获得10
2秒前
777发布了新的文献求助10
3秒前
yuan完成签到,获得积分20
3秒前
jialin完成签到 ,获得积分10
3秒前
humorlife发布了新的文献求助20
3秒前
4秒前
香蕉千风发布了新的文献求助10
4秒前
吴泽旭发布了新的文献求助10
4秒前
jnm123发布了新的文献求助20
4秒前
5秒前
5秒前
Jared完成签到,获得积分0
5秒前
宝宝巴士完成签到 ,获得积分10
6秒前
Orange应助灼灼采纳,获得10
6秒前
6秒前
6秒前
Kuhaku完成签到,获得积分10
6秒前
无花果应助和谐碧琴采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
Yongjiang完成签到,获得积分10
7秒前
科研通AI6.1应助FFFFFF采纳,获得10
7秒前
所所应助chigga采纳,获得10
8秒前
8秒前
8秒前
liang完成签到,获得积分20
8秒前
9秒前
小熊喵完成签到,获得积分10
9秒前
朝阳夕赏发布了新的文献求助10
9秒前
qiongqiong发布了新的文献求助10
9秒前
欣慰外套完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774094
求助须知:如何正确求助?哪些是违规求助? 5615909
关于积分的说明 15434577
捐赠科研通 4906555
什么是DOI,文献DOI怎么找? 2640285
邀请新用户注册赠送积分活动 1588108
关于科研通互助平台的介绍 1543157