材料科学
锐钛矿
纳米材料
成核
结晶
金红石
氧化物
化学物理
兴奋剂
氧气
纳米技术
钛
空位缺陷
化学工程
相(物质)
催化作用
结晶学
光催化
化学
冶金
光电子学
有机化学
工程类
生物化学
作者
Guilherme B. Strapasson,Adrián Sanz Arjona,Joseph E. McPeak,Olivia Aalling‐Frederiksen,Adam F. Sapnik,Nanna L. Baun,Heloisa N. Bordallo,Cristiane B. Rodella,Daniela Zanchet,Kirsten M. Ø. Jensen
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-08-21
卷期号:19 (34): 30986-30999
标识
DOI:10.1021/acsnano.5c08093
摘要
Oxygen vacancies play a pivotal role in tailoring the electronic, optical, and catalytic properties of reducible metal oxides. Here, we provide a complete overview of oxygen vacancy-induced structural evolution of iron-doped titanium oxide nanomaterials with insights into their synthesis, formation, and crystallization processes. Structural analysis combining multiple techniques reveals the formation of anatase nanoparticles at low Fe loadings (i.e., ≤10 at. % Fe). At intermediate Fe concentrations (i.e., 15-20 at. % Fe), a mixture of anatase and rutile forms with the presence of extended disordered defects similar to crystallographic shear planes. These become more notable at high Fe loadings (i.e., ≥30 at. % Fe) with the complete transition to the rutile phase with a high density of defects. Moreover, we provide important information on the nucleation, growth, and crystallization processes during synthesis, emphasizing the impact of Fe atom incorporation on the TiO2 lattice, the formation of reaction intermediates, and the structural evolution at the nano regime. The ability to control oxygen vacancies and engineer defects in Fe-doped TiO2 allows for the optimization of charge transport, enhancing catalytic activity and tuning optical properties for applications in environmental remediation, sensing, and next-generation semiconductor technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI