记忆电阻器
材料科学
对偶(语法数字)
双模
神经形态工程学
适应(眼睛)
可塑性
模式(计算机接口)
神经元
纳米技术
神经科学
电子工程
计算机科学
人工神经网络
人工智能
工程类
复合材料
艺术
文学类
生物
操作系统
作者
Zih‐Siao Liao,Kuan‐Ting Chen,Li‐Chung Shih,S. C. Chen,K.-L. Hsu,C. Chen,Kuan‐Han Lin,Jen‐Sue Chen
标识
DOI:10.1002/adfm.202508585
摘要
Abstract Despite the success of Mott memristors in emulating neuronal dynamics, their use in modeling intrinsic neuronal plasticity (INP) remains rare. Here, a dual‐mode Pt/V/TaO x /Pt Mott memristor is presented that achieves INP through resistance‐dependent threshold modulation, enabled by the coupling of conductive filament formation and Mott transition. Excitatory and inhibitory pulses independently modulate spiking frequency, time‐to‐first‐spike, and leaky integrate‐and‐fire behavior without altering synaptic input. Notably, the device exhibits adaptive INP responses under sustained modulation, dynamically stabilizing spiking behavior and preventing excessive excitation or inhibition. It is further demonstrated that INP can compensate for synaptic failure and help the neuron recover periodic spiking. These findings establish a compact, intrinsically plastic artificial neuron capable of self‐regulating excitability, offering a scalable solution for next‐generation neuromorphic hardware.
科研通智能强力驱动
Strongly Powered by AbleSci AI