A hybrid machine learning model for landslide-oriented risk assessment of long-distance pipelines

管道运输 山崩 管道(软件) 危害 脆弱性评估 风险评估 脆弱性(计算) 计算机科学 风险分析(工程) 采矿工程 工程类 岩土工程 环境工程 心理弹性 计算机安全 程序设计语言 心理治疗师 化学 有机化学 医学 心理学
作者
Haijia Wen,Lei Liu,Jialan Zhang,Jiwei Hu,Xiaomei Huang
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:342: 118177-118177 被引量:50
标识
DOI:10.1016/j.jenvman.2023.118177
摘要

Preparation of pipeline risk zoning is essential for pipeline construction and safe operation. Landslides are one of the main sources of risk to the safe operations of oil and gas pipelines in mountainous areas. This work aims to propose a quantitative assessment model of landslide-induced long-distance pipeline risk by analyzing historical landslide hazard data along oil and gas pipelines. Using the Changshou-Fuling-Wulong-Nanchuan (CN) gas pipeline dataset, two independent assessments were carried out: landslide susceptibility assessment and pipeline vulnerability assessment. Firstly, the study combined the recursive feature elimination and particle swarm optimization-AdaBoost method (RFE-PSO-AdaBoost) to develop a landslide susceptibility mapping model. The RFE method was used to select the conditioning factors, while PSO was used to tune the hyper-parameters. Secondly, considering the angular relationship between the pipelines and landslides, and the segmentation of the pipelines using the fuzzy clustering (FC), the CRITIC method (FC-CRITIC) was combined to develop a pipeline vulnerability assessment model. Accordingly, a pipeline risk map was obtained based on pipeline vulnerability and landslide susceptibility assessment. The study results show that almost 35.3% of the slope units were in extremely high susceptibility zones, 6.68% of the pipelines were in extremely high vulnerability areas, the southern and eastern pipelines segmented in the study area were located in high risk areas and coincided well with the distribution of landslides. The proposed hybrid machine learning model for landslide-oriented risk assessment of long-distance pipelines can provide a scientific and reasonable risk classification for new planning or in service pipelines to avoid landslide-oriented risk and ensure their safe operation in mountainous areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白柏233完成签到,获得积分10
1秒前
1秒前
2秒前
xuwenliu完成签到,获得积分10
2秒前
springsun发布了新的文献求助10
2秒前
momo完成签到,获得积分10
2秒前
Leo_ms完成签到,获得积分10
3秒前
iieee发布了新的文献求助10
3秒前
3秒前
4秒前
李爱国应助vippp采纳,获得30
5秒前
hu发布了新的文献求助10
5秒前
青年才俊发布了新的文献求助10
6秒前
田様应助巴斯光年采纳,获得10
6秒前
jcae123完成签到,获得积分10
6秒前
希望天下0贩的0应助xh采纳,获得10
6秒前
mao完成签到,获得积分10
6秒前
7秒前
酒酿圆子发布了新的文献求助10
7秒前
7秒前
7秒前
LH发布了新的文献求助10
9秒前
9秒前
小宇完成签到,获得积分10
11秒前
不倦发布了新的文献求助10
11秒前
12秒前
贪玩飞珍发布了新的文献求助10
12秒前
傲娇的以松完成签到,获得积分10
13秒前
13秒前
Eureka发布了新的文献求助30
14秒前
15秒前
cc完成签到,获得积分10
17秒前
xh发布了新的文献求助10
17秒前
淡淡青枫完成签到,获得积分10
17秒前
Owen应助joy采纳,获得30
18秒前
海浪发布了新的文献求助40
19秒前
真实的啤酒完成签到,获得积分10
21秒前
22秒前
Jerry发布了新的文献求助20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288890
求助须知:如何正确求助?哪些是违规求助? 4440716
关于积分的说明 13825423
捐赠科研通 4323041
什么是DOI,文献DOI怎么找? 2372872
邀请新用户注册赠送积分活动 1368342
关于科研通互助平台的介绍 1332234