GBP1 as a machine learning-prioritized biomarker and therapeutic target for epstein-barr virus-induced clear cell renal cell carcinoma: multi-omics causal validation

作者
Guangqiang Zhu,Chunlin Tan,Yugen Li
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000004393
摘要

Background: This study aims to explore the oncogenic mechanisms of Epstein-Barr virus (EBV) in clear cell renal cell carcinoma (ccRCC) and to identify actionable biomarkers. Methods: Mendelian randomization (MR) was employed to analyze the causal effects of EBV on ccRCC and to explore the mediating role of immune cells. Single-cell RNA sequencing (scRNA-seq) data of ccRCC were combined with EBV bulk-mRNA data to screen candidate genes for machine learning model construction. The SHapley Additive exPlanations (SHAP) framework was introduced to interpret feature contributions. High-confidence identification and validation of core targets were achieved through multi-omics MR, Summary-data-based MR (SMR), colocalization, drug prediction, and molecular docking. Results: MR analysis demonstrated that regulatory T cells (Tregs) and B cells mediated EBV-specific antibody-driven ccRCC risk elevation. Through machine learning, we prioritized seven key genes (GBP1, IFI16, RECQL, GBP5, STK39, TAP2, and IL12RB1) from 24 EBV-ccRCC related Treg&B cell co-expressed genes. SHAP and multi-omics validation highlighted GBP1 as the core target (SHAP value = 0.191), with MR and colocalization (PP.H4 > 0.80) corroborating its causal involvement. Drug prediction revealed that finasteride exerts an inhibitory effect on GBP1, and molecular docking provided strong evidence of binding affinity (−7.6 kcal/mol). Conclusion: This work reveals a causal relationship between EBV infection and ccRCC pathogenesis, establishing GBP1 as a top-priority candidate molecule through a multi-level, multi-dimensional evidence framework. Drug prediction and molecular docking suggest finasteride as a potential inhibitor of GBP1, offering new strategies for the precise prevention and treatment of ccRCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
六点完成签到,获得积分10
刚刚
peanut发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
从心完成签到,获得积分10
1秒前
yon发布了新的文献求助10
1秒前
晏清完成签到,获得积分10
1秒前
星星星醒醒完成签到,获得积分10
2秒前
天天学习完成签到,获得积分10
2秒前
铭轩发布了新的文献求助10
2秒前
2秒前
2秒前
何hh发布了新的文献求助10
2秒前
3秒前
3秒前
超级老三发布了新的文献求助10
3秒前
公司账号2发布了新的文献求助10
4秒前
NexusExplorer应助积极代芙采纳,获得10
4秒前
小值钱完成签到,获得积分10
4秒前
aa完成签到,获得积分10
4秒前
星辰发布了新的文献求助10
4秒前
水电站发布了新的文献求助10
5秒前
5秒前
上官若男应助Sam十九采纳,获得10
5秒前
longsay发布了新的文献求助10
5秒前
5秒前
坦率无剑发布了新的文献求助10
5秒前
嗷嗷完成签到,获得积分10
6秒前
6秒前
刘涵发布了新的文献求助10
6秒前
慢慢发布了新的文献求助10
6秒前
6秒前
7秒前
用户123发布了新的文献求助10
7秒前
AI读文献的小新完成签到,获得积分10
7秒前
干净的冷安应助叶子宁采纳,获得10
7秒前
momo完成签到 ,获得积分10
7秒前
852应助虎桔采纳,获得10
8秒前
852应助王荷一采纳,获得10
8秒前
蚊蚊爱读书应助雨滴音乐采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246