Application of stable isotope and mineral element fingerprint in identification of Hainan camellia oil producing area based on convolutional neural networks

油茶 环境科学 山茶花 数学 植物 生物
作者
Jiashun Fu,Junhao Wang,Zhe Chen,Zhuowen Deng,Hanggui Lai,Liangxiao Zhang,Yong‐Huan Yun,Chenghui Zhang
出处
期刊:Food Control [Elsevier BV]
卷期号:150: 109744-109744 被引量:19
标识
DOI:10.1016/j.foodcont.2023.109744
摘要

Camellia oil is a unique high-end woody edible vegetable oil in China. In particular, camellia oil from Hainan is recognized as having unique quality and high value. Protecting the authenticity of its origin is essential to ensure the reputation and quality safety of the Hainan camellia oil market. Thus, we explored the potential of stable isotopes and mineral elements to origin traceability of camellia oil from Hainan, and analyzed the three stable isotopes and 21 mineral elements of camellia oil using stable isotope mass spectrometer and inductively coupled plasma mass spectrometer. The results showed that there were significant regional differences in stable isotope ratios and mineral element contents of camellia oil from different areas. The constructed convolutional neural network (CNN) model showed higher classification accuracy than other common classification models including orthogonal partial least squares discriminant analysis (OPLS-DA), support vector machine (SVM) and random forest. It not only distinguished the camellia oil from Hainan and other main producing areas with an accuracy of 93.33%, but also correctly identified the camellia oil from various regions in Hainan with an accuracy of 98.57%. Our research showed that stable isotope and mineral element characteristics were efficient indicators for identifying the geographic origin of camellia oil, and helped to fill the gap in the identification of camellia oil origin in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Monty完成签到,获得积分10
1秒前
1秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
1秒前
干净幻梦完成签到,获得积分10
1秒前
wjsownbo完成签到 ,获得积分10
1秒前
2秒前
2秒前
木子完成签到,获得积分10
2秒前
科学家发布了新的文献求助10
2秒前
顺利寻冬发布了新的文献求助10
3秒前
3秒前
山雀发布了新的文献求助10
3秒前
一口一个小面包完成签到,获得积分10
3秒前
害羞书易完成签到,获得积分10
3秒前
zhangzhang发布了新的文献求助10
3秒前
革命努力完成签到,获得积分10
3秒前
3秒前
4秒前
kirito发布了新的文献求助10
4秒前
活力忆秋完成签到,获得积分10
4秒前
叭叭完成签到,获得积分10
5秒前
5秒前
asymmetric糖发布了新的文献求助10
5秒前
核桃应助卡卡西西西采纳,获得10
5秒前
5秒前
龚井发布了新的文献求助10
5秒前
5秒前
Hello应助科研挂采纳,获得10
6秒前
小田完成签到 ,获得积分10
6秒前
毕长富完成签到,获得积分10
6秒前
Akim应助yang采纳,获得30
8秒前
852应助b_wasky采纳,获得10
8秒前
平常的毛豆应助ardejiang采纳,获得10
8秒前
momo发布了新的文献求助10
9秒前
10秒前
10秒前
英勇的白风完成签到,获得积分10
10秒前
11秒前
顾子墨完成签到,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798