Unsupervised feature extraction with autoencoders for EEG based multiclass motor imagery BCI

脑电图 脑-机接口 计算机科学 自编码 人工智能 运动表象 模式识别(心理学) 特征提取 支持向量机 自回归模型 语音识别 人工神经网络 数学 统计 心理学 精神科
作者
Souvik Phadikar,Nidul Sinha,Rajdeep Ghosh
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 118901-118901 被引量:3
标识
DOI:10.1016/j.eswa.2022.118901
摘要

Decoding of motor imagery (MI) from Electroencephalogram (EEG) is an important component of the Brain-Computer Interface (BCI) system that helps motor-disabled people interact with the outside world via external devices. The main issue in developing the EEG based BCI is the informative confusion due to the non-stationary characteristics of EEG data. In this work, an innovative idea of transforming an EEG signal into the weight vector of an unsupervised neural network called the autoencoder is proposed for the first time to solve that problem. Separate autoencoders are trained for the individual EEG data. The weight vectors are then optimized for the individual EEG signals. The EEG signals are thus represented in a new domain that is in the form of weight vectors of the individual autoencoder. The weight vectors are then used to extract features such as autoregressive coefficients (ARs), Shannon entropy (SE), and wavelet leader. A window-based feature extraction technique is implemented to capture the local features of the EEG data. Finally, extracted features are classified using a classifier network. The proposed approach is tested on two publicly accessible EEG datasets (BCI competition-III and Competition-IV) to ensure that it is as successful as and superior to the previously published methods. The proposed technique achieves a mean accuracy of 95.33 % for dataset-IIIa from BCI-III and a mean accuracy of 97% for dataset-IIa from BCI-IV for four-class EEG-based MI classification. The experimental outcomes show that the proposed approach is a promising way to increase BCI performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助cyanpomelo采纳,获得30
刚刚
滴滴发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
zpf发布了新的文献求助10
2秒前
Able发布了新的文献求助10
2秒前
2秒前
3秒前
小L发布了新的文献求助10
4秒前
4秒前
帆帆牛发布了新的文献求助10
4秒前
小小学神发布了新的文献求助10
5秒前
5秒前
自信的yu完成签到,获得积分20
5秒前
呼噜发布了新的文献求助30
5秒前
chunyan_sysu完成签到,获得积分10
6秒前
小d完成签到,获得积分10
6秒前
shann完成签到,获得积分10
7秒前
7秒前
zoey完成签到,获得积分10
7秒前
张曼婷发布了新的文献求助10
7秒前
明亮的元柏完成签到,获得积分10
8秒前
CodeCraft应助1234采纳,获得10
8秒前
科研狗完成签到,获得积分10
8秒前
syx发布了新的文献求助10
8秒前
雨中客发布了新的文献求助10
8秒前
9秒前
阔达月亮发布了新的文献求助10
9秒前
等待的又蓝完成签到,获得积分10
9秒前
Owen应助wnx001111采纳,获得10
9秒前
9秒前
田様应助Emma采纳,获得20
9秒前
9秒前
共享精神应助活泼的之槐采纳,获得10
10秒前
10秒前
KST完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
上官若男应助韧战采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071427
求助须知:如何正确求助?哪些是违规求助? 4292111
关于积分的说明 13373408
捐赠科研通 4112841
什么是DOI,文献DOI怎么找? 2252088
邀请新用户注册赠送积分活动 1257155
关于科研通互助平台的介绍 1189893