Cellular community detection for tissue phenotyping in colorectal cancer histology images

德劳内三角测量 特征向量 计算机科学 数字化病理学 人工智能 模式识别(心理学) 特征(语言学) 测地线 卷积神经网络 数学 算法 语言学 哲学 数学分析
作者
Sajid Javed,Arif Mahmood,Muhammad Moazam Fraz,Navid Alemi Koohbanani,Ksenija Benes,Yee‐Wah Tsang,Katherine Hewitt,David Epstein,David Snead,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:63: 101696-101696 被引量:172
标识
DOI:10.1016/j.media.2020.101696
摘要

Classification of various types of tissue in cancer histology images based on the cellular compositions is an important step towards the development of computational pathology tools for systematic digital profiling of the spatial tumor microenvironment. Most existing methods for tissue phenotyping are limited to the classification of tumor and stroma and require large amount of annotated histology images which are often not available. In the current work, we pose the problem of identifying distinct tissue phenotypes as finding communities in cellular graphs or networks. First, we train a deep neural network for cell detection and classification into five distinct cellular components. Considering the detected nuclei as nodes, potential cell-cell connections are assigned using Delaunay triangulation resulting in a cell-level graph. Based on this cell graph, a feature vector capturing potential cell-cell connection of different types of cells is computed. These feature vectors are used to construct a patch-level graph based on chi-square distance. We map patch-level nodes to the geometric space by representing each node as a vector of geodesic distances from other nodes in the network and iteratively drifting the patch nodes in the direction of positive density gradients towards maximum density regions. The proposed algorithm is evaluated on a publicly available dataset and another new large-scale dataset consisting of 280K patches of seven tissue phenotypes. The estimated communities have significant biological meanings as verified by the expert pathologists. A comparison with current state-of-the-art methods reveals significant performance improvement in tissue phenotyping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西红柿完成签到,获得积分10
1秒前
1秒前
1秒前
哈哈哈完成签到,获得积分10
3秒前
3秒前
阳阳完成签到,获得积分10
4秒前
罗先炀完成签到,获得积分10
4秒前
1x完成签到,获得积分10
4秒前
5秒前
qqq159753发布了新的文献求助10
5秒前
6秒前
过时的飞薇完成签到,获得积分10
6秒前
曾莉完成签到,获得积分20
6秒前
蒸制完成签到,获得积分10
6秒前
勇胜发布了新的文献求助10
6秒前
吕方发布了新的文献求助10
7秒前
8秒前
lingjunjie完成签到 ,获得积分10
8秒前
CCY完成签到,获得积分10
9秒前
cccyyy完成签到,获得积分10
9秒前
羊羊是只羊完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
野椒搞科研完成签到,获得积分10
11秒前
大个应助luo采纳,获得10
11秒前
CCY发布了新的文献求助10
11秒前
11秒前
孟见你完成签到,获得积分10
12秒前
专一的新竹完成签到,获得积分10
12秒前
qq完成签到,获得积分10
12秒前
望海回川发布了新的文献求助30
13秒前
大雁发布了新的文献求助10
13秒前
充电宝应助现代的妍采纳,获得10
13秒前
14秒前
14秒前
cherry发布了新的文献求助10
15秒前
张娇完成签到 ,获得积分10
15秒前
xin完成签到,获得积分10
15秒前
机智书桃完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532391
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576955
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499064
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450284