Convolutional Neural Network for Convective Storm Nowcasting Using 3-D Doppler Weather Radar Data

作者
Lei Han,Juanzhen Sun,Wei Zhang,Lei Han,Juanzhen Sun,Wei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (2): 1487-1495 被引量:85
标识
DOI:10.1109/tgrs.2019.2948070
摘要

Convective storms are one of the severe weather hazards found during the warm\nseason. Doppler weather radar is the only operational instrument that can\nfrequently sample the detailed structure of convective storm which has a small\nspatial scale and short lifetime. For the challenging task of short-term\nconvective storm forecasting, 3-D radar images contain information about the\nprocesses in convective storm. However, effectively extracting such information\nfrom multisource raw data has been problematic due to a lack of methodology and\ncomputation limitations. Recent advancements in deep learning techniques and\ngraphics processing units now make it possible. This article investigates the\nfeasibility and performance of an end-to-end deep learning nowcasting method.\nThe nowcasting problem was transformed into a classification problem first, and\nthen, a deep learning method that uses a convolutional neural network was\npresented to make predictions. On the first layer of CNN, a cross-channel 3D\nconvolution was proposed to fuse 3D raw data. The CNN method eliminates the\nhandcrafted feature engineering, i.e., the process of using domain knowledge of\nthe data to manually design features. Operationally produced historical data of\nthe Beijing-Tianjin-Hebei region in China was used to train the nowcasting\nsystem and evaluate its performance; 3737332 samples were collected in the\ntraining data set. The experimental results show that the deep learning method\nimproves nowcasting skills compared with traditional machine learning methods.\n
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助优雅的盼夏采纳,获得10
刚刚
刚刚
1秒前
1秒前
17853723535发布了新的文献求助10
1秒前
花楹发布了新的文献求助10
1秒前
陈艺鹏完成签到,获得积分10
1秒前
wander完成签到,获得积分10
1秒前
2秒前
2秒前
脑洞疼应助鲨鱼辣椒采纳,获得10
3秒前
情怀应助QH采纳,获得30
3秒前
细腻语堂发布了新的文献求助20
3秒前
4秒前
舒适的鹤轩完成签到,获得积分10
4秒前
Mingyue123完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
简单千儿发布了新的文献求助10
5秒前
5秒前
Jasper应助超级蘑菇采纳,获得10
5秒前
6秒前
wander发布了新的文献求助30
6秒前
6秒前
salad完成签到,获得积分20
6秒前
悠悠发布了新的文献求助10
6秒前
任侠传发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
17853723535完成签到,获得积分10
7秒前
7秒前
Bonnie发布了新的文献求助10
7秒前
科研通AI2S应助小王采纳,获得10
8秒前
简单平蓝发布了新的文献求助10
8秒前
8秒前
Pendulium发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531325
求助须知:如何正确求助?哪些是违规求助? 4620210
关于积分的说明 14572130
捐赠科研通 4559739
什么是DOI,文献DOI怎么找? 2498562
邀请新用户注册赠送积分活动 1478528
关于科研通互助平台的介绍 1449968