Prediction of Air Temperature Distribution around Rider on Idling Motorcycle by CFD Using DES Model

导管(解剖学) 气流 空气温度 湍流 机械 计算流体力学 气象学 空气动力学 环境科学 模拟 工程类 机械工程 物理 医学 病理
作者
Yuzo Fujita,Hiroshi Tatsumi
出处
期刊:SAE technical paper series 卷期号:1 被引量:1
标识
DOI:10.4271/2019-32-0567
摘要

<div class="section abstract"><div class="htmlview paragraph">In this study, we investigated how to calculate and predict the air temperature distribution around the rider of a stationary motorcycle with the engine at idle. To analyze the air temperature distribution of an idling motorcycle, we needed to accurately predict the mixing of the forced convection air from the radiator fan and the natural convection air caused by the air temperature difference. For the calculation, we used two types of turbulent flow models: realizable k-ε (RKE) and detached eddy simulation (DES). First, in view of the mixing of the radiator exhaust with outside air, we made three-dimensional measurements of the air temperature distribution around the vehicle body to evaluate the accuracy of calculations made by the two models. We then used the models to predict the air temperature distribution around the rider for different air outlet duct configurations as well as for two motorcycles with different displacement values. The results showed that, although the RKE model effectively reproduced the qualitative trend of the air temperature distribution, it showed poorer prediction accuracy than the DES model. On the other hand, the DES model successfully reproduced the trends for different air outlet duct configurations, and the prediction error of air temperature around the rider was within 5°C of the actual measurements for the two different motorcycles. Although the DES computation time of 72 hours was seven times that of RKE, it was still considered practicable even for the model of the largest scale. Therefore, from the above, we can conclude that the DES model used in this study can effectively predict the air temperature distribution around the rider of an idling motorcycle.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
1秒前
cumtlhy88完成签到 ,获得积分10
3秒前
星辰大海应助LQ采纳,获得10
4秒前
5秒前
lingua应助大力的海蓝采纳,获得10
6秒前
英姑应助liubin0901采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
一二三四完成签到 ,获得积分10
9秒前
alho完成签到 ,获得积分10
10秒前
11秒前
11秒前
花伦儿完成签到,获得积分20
12秒前
yyd完成签到 ,获得积分10
12秒前
Mcdreamy发布了新的文献求助10
12秒前
乐乐应助拼搏的冰绿采纳,获得10
13秒前
14秒前
14秒前
14秒前
congcong发布了新的文献求助10
14秒前
15秒前
丸子吖发布了新的文献求助10
15秒前
逢投必中完成签到 ,获得积分10
16秒前
16秒前
Bake完成签到,获得积分10
16秒前
16秒前
16秒前
阳光海云完成签到,获得积分10
17秒前
17秒前
梦泊完成签到,获得积分10
18秒前
科目三应助Ai_niyou采纳,获得10
19秒前
19秒前
LQ发布了新的文献求助10
19秒前
Oscillator发布了新的文献求助10
19秒前
桃之夭夭发布了新的文献求助10
19秒前
Lucas应助满意的一刀采纳,获得30
20秒前
小叶子发布了新的文献求助10
21秒前
21秒前
林森森发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492432
求助须知:如何正确求助?哪些是违规求助? 4590523
关于积分的说明 14430879
捐赠科研通 4522998
什么是DOI,文献DOI怎么找? 2478115
邀请新用户注册赠送积分活动 1463158
关于科研通互助平台的介绍 1435830