亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Relating the 3D Geometry and Photoelectrochemical Activity of WO3-Loaded n-Si Nanowires: Design Rules for Photoelectrodes

纳米线 材料科学 纳米技术 几何学 化学工程 光电子学 数学 工程类
作者
Anja Bieberle‐Hütter,Yihui Zhao,Shashank Balasubramanyam,Ageeth A. Bol
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:3 (10): 9628-9634 被引量:3
标识
DOI:10.1021/acsaem.0c01115
摘要

Nanostructured electrodes for photoelectrochemical (PEC) applications, such as water splitting, have a rather low photocurrent density regarding their highly enlarged surface area compared to plain electrodes. This demands for further understanding of the relation between the three-dimensional (3D) geometry and the PEC activity. To this end, we fabricate WO3/Si nanowire array photoanodes with various nanowire lengths (1.3, 2.7, 3.2, and 3.8 μm) and different WO3 thicknesses (10, 30, and 50 nm) using wet chemical etching for nanostructuring of Si and atomic layer deposition for the deposition of WO3. It is found that by increasing the etching time, the nanowires become longer and the top surface area decreases. The photocurrent density first increases and then decreases with increasing Si etching time. This behavior can be explained by different and opposite effects regarding absorption, geometry, and material-specific properties. Particularly, the decrease of the photocurrent density can be due to: (1) the longer the nanowires, the heavier the recombination of the photogenerated carriers and (2) the long-time Si etching results in a loss of top part of the nanowire arrays. Because of shadowing, the WO3 located at the top part of the nanowires is more effective than that at the bottom part for the WO3/Si nanowire arrays and therefore the photocurrent is decreased. It reveals a trade-off between the top part surface area and the length of the nanowires. This study contributes to a better understanding of the relation between the geometry of nanostructures and the performance of PEC electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emma完成签到,获得积分10
刚刚
大个应助flower采纳,获得10
刚刚
2秒前
2秒前
5秒前
5秒前
傲娇的坤完成签到,获得积分10
6秒前
xxx关闭了xxx文献求助
6秒前
8秒前
傲娇的坤发布了新的文献求助10
10秒前
11秒前
Pretrial完成签到 ,获得积分10
13秒前
灵巧汉堡完成签到 ,获得积分10
14秒前
两袖清风完成签到 ,获得积分10
16秒前
JamesPei应助怕孤单的德天采纳,获得10
20秒前
xxx完成签到,获得积分10
20秒前
21秒前
怕孤单的德天完成签到,获得积分10
25秒前
27秒前
思源应助科研通管家采纳,获得10
27秒前
Wing完成签到 ,获得积分10
31秒前
在水一方应助小宇OvO采纳,获得10
31秒前
可爱的函函应助大力音响采纳,获得10
33秒前
37秒前
39秒前
42秒前
八百标兵完成签到,获得积分10
42秒前
小宇OvO发布了新的文献求助10
44秒前
无花果应助winew采纳,获得10
50秒前
忘记明天发布了新的文献求助10
50秒前
飞云完成签到 ,获得积分10
57秒前
鸣蜩十三完成签到,获得积分10
1分钟前
ranj完成签到,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
冬天该很好完成签到,获得积分20
1分钟前
852应助xu采纳,获得30
1分钟前
1分钟前
潇洒的马里奥完成签到,获得积分10
1分钟前
落尘府发布了新的文献求助10
1分钟前
能干的荆完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3922022
求助须知:如何正确求助?哪些是违规求助? 3466799
关于积分的说明 10945142
捐赠科研通 3195699
什么是DOI,文献DOI怎么找? 1765776
邀请新用户注册赠送积分活动 855738
科研通“疑难数据库(出版商)”最低求助积分说明 795069