计算机科学
平面布置图
平面图(考古学)
过程(计算)
构造(python库)
边界(拓扑)
形成性评价
人工智能
工程制图
工程类
历史
统计
操作系统
数学分析
考古
程序设计语言
数学
作者
Wenming Wu,Xiao‐Ming Fu,Rui Tang,Yuhan Wang,Yu-Hao Qi,Ligang Liu
标识
DOI:10.1145/3355089.3356556
摘要
We propose a novel data-driven technique for automatically and efficiently generating floor plans for residential buildings with given boundaries. Central to this method is a two-stage approach that imitates the human design process by locating rooms first and then walls while adapting to the input building boundary. Based on observations of the presence of the living room in almost all floor plans, our designed learning network begins with positioning a living room and continues by iteratively generating other rooms. Then, walls are first determined by an encoder-decoder network, and then they are refined to vector representations using dedicated rules. To effectively train our networks, we construct RPLAN - a manually collected large-scale densely annotated dataset of floor plans from real residential buildings. Intensive experiments, including formative user studies and comparisons, are conducted to illustrate the feasibility and efficacy of our proposed approach. By comparing the plausibility of different floor plans, we have observed that our method substantially outperforms existing methods, and in many cases our floor plans are comparable to human-created ones.
科研通智能强力驱动
Strongly Powered by AbleSci AI