PaDGAN: Learning to Generate High-Quality Novel Designs

生成设计 计算机科学 质量(理念) 生成语法 机器学习 工程设计过程 功能(生物学) 人工智能 空格(标点符号) 工程类 操作系统 公制(单位) 哲学 认识论 生物 机械工程 进化生物学 运营管理
作者
Wei Chen,Faez Ahmed
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:143 (3) 被引量:52
标识
DOI:10.1115/1.4048626
摘要

Abstract Deep generative models are proven to be a useful tool for automatic design synthesis and design space exploration. When applied in engineering design, existing generative models face three challenges: (1) generated designs lack diversity and do not cover all areas of the design space, (2) it is difficult to explicitly improve the overall performance or quality of generated designs, and (3) existing models generally do not generate novel designs, outside the domain of the training data. In this article, we simultaneously address these challenges by proposing a new determinantal point process-based loss function for probabilistic modeling of diversity and quality. With this new loss function, we develop a variant of the generative adversarial network, named “performance augmented diverse generative adversarial network” (PaDGAN), which can generate novel high-quality designs with good coverage of the design space. By using three synthetic examples and one real-world airfoil design example, we demonstrate that PaDGAN can generate diverse and high-quality designs. In comparison to a vanilla generative adversarial network, on average, it generates samples with a 28% higher mean quality score with larger diversity and without the mode collapse issue. Unlike typical generative models that usually generate new designs by interpolating within the boundary of training data, we show that PaDGAN expands the design space boundary outside the training data towards high-quality regions. The proposed method is broadly applicable to many tasks including design space exploration, design optimization, and creative solution recommendation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三十四画生完成签到,获得积分10
刚刚
刚刚
随性随缘随命完成签到 ,获得积分10
刚刚
guozizi完成签到,获得积分10
1秒前
1秒前
龚成明发布了新的文献求助30
1秒前
3秒前
打工仔发布了新的文献求助10
3秒前
乐观凝云发布了新的文献求助10
3秒前
欣喜的人龙完成签到 ,获得积分10
4秒前
kaixin发布了新的文献求助10
5秒前
鲜于仙完成签到,获得积分10
7秒前
guozizi发布了新的文献求助10
7秒前
F1发布了新的文献求助10
8秒前
黄景滨完成签到 ,获得积分10
9秒前
9秒前
小二郎应助zombleq采纳,获得10
9秒前
虎子完成签到 ,获得积分20
10秒前
asasd完成签到,获得积分10
10秒前
hideyoshi完成签到,获得积分10
10秒前
11秒前
11秒前
兴奋的凝丝完成签到,获得积分10
12秒前
李健应助爱学习的小凌采纳,获得10
13秒前
cyf发布了新的文献求助10
15秒前
fox199753206完成签到,获得积分10
16秒前
16秒前
luo完成签到,获得积分10
17秒前
17秒前
20秒前
所所应助lialia采纳,获得10
21秒前
math完成签到,获得积分10
21秒前
22秒前
机智谷蕊发布了新的文献求助10
22秒前
一碳单位发布了新的文献求助10
22秒前
8R60d8应助木小小采纳,获得10
22秒前
23秒前
健壮惋清完成签到 ,获得积分10
26秒前
米米发布了新的文献求助10
26秒前
27秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844364
求助须知:如何正确求助?哪些是违规求助? 3386802
关于积分的说明 10546075
捐赠科研通 3107287
什么是DOI,文献DOI怎么找? 1711653
邀请新用户注册赠送积分活动 824135
科研通“疑难数据库(出版商)”最低求助积分说明 774519