Ultrasound-Based Radiomic Nomogram for Predicting Lateral Cervical Lymph Node Metastasis in Papillary Thyroid Carcinoma

列线图 医学 放射科 逻辑回归 甲状腺癌 淋巴结 阶段(地层学) 颈淋巴结 转移 肿瘤科 癌症 内科学 甲状腺 生物 古生物学
作者
Yuyang Tong,Li Ji,Yunxia Huang,Jin Zhou,Tongtong Liu,Yi Guo,Jinhua Yu,Shichong Zhou,Yuanyuan Wang,Cai Chang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:28 (12): 1675-1684 被引量:71
标识
DOI:10.1016/j.acra.2020.07.017
摘要

Accurate preoperative identification of lateral cervical lymph node metastasis (LNM) is important for decision-making and clinical management of patients with papillary thyroid carcinoma (PTC). The aim of this study was to develop an ultrasound (US)-based radiomic nomogram to preoperatively predict the lateral LNM in PTC patients.In this retrospective study, a total of 886 patients were enrolled and randomly divided into 2 groups. Radiomic features were extracted from the preoperative US images. A radiomic signature was constructed using the least absolute shrinkage and selection operator algorithm in the training set. Multivariate logistic regression was performed to develop the radiomic nomogram, which incorporating the radiomic signature and the selected clinical characteristics. The performance of the nomogram was assessed by its discrimination, calibration, and clinical usefulness in both the training and validation sets.The radiomic signature was significantly associated with the lateral LNM in both cohorts (p< 0.001). The nomogram that consisted of radiomic signature, US-reported cervical lymph node (CLN) status, and CT-reported CLN status demonstrated good discrimination and calibration in the training and validation sets with an AUC of 0.946 and 0.914, respectively. The decision curve analysis indicated that the radiomic nomogram was worthy of clinical application.The radiomic nomogram proposed here has good performance for noninvasively predicting the lateral LNM and might be used to facilitate clinical decision-making and potentially improve the survival outcome in selected patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
许甜甜鸭应助偏翩采纳,获得10
1秒前
niuade发布了新的文献求助10
1秒前
d00007发布了新的文献求助10
1秒前
宋哲哲发布了新的文献求助30
1秒前
溜溜心儿发布了新的文献求助10
2秒前
3秒前
zyw发布了新的文献求助10
5秒前
小二郎应助CTX采纳,获得10
5秒前
猕猴桃猴发布了新的文献求助10
7秒前
江峰发布了新的文献求助10
7秒前
高兴微笑完成签到,获得积分10
8秒前
川农辅导员完成签到,获得积分10
8秒前
David完成签到,获得积分10
8秒前
溜溜心儿完成签到,获得积分10
9秒前
d00007完成签到,获得积分10
9秒前
无尘泪完成签到,获得积分10
10秒前
summeryouyou完成签到,获得积分10
11秒前
科研通AI5应助想要毕业采纳,获得10
11秒前
Lucas应助梅子酒采纳,获得10
12秒前
13秒前
艺涵完成签到,获得积分10
14秒前
猕猴桃猴完成签到,获得积分10
18秒前
顺其自然完成签到 ,获得积分10
18秒前
皛宁发布了新的文献求助10
18秒前
20秒前
ding应助江峰采纳,获得10
21秒前
今后应助lxlcx采纳,获得10
22秒前
26秒前
26秒前
鲜蘑完成签到,获得积分10
27秒前
29秒前
30秒前
feng1235完成签到,获得积分10
31秒前
张流筝完成签到 ,获得积分10
31秒前
31秒前
荀煜祺发布了新的文献求助10
31秒前
32秒前
江峰发布了新的文献求助10
33秒前
Conan_CD发布了新的文献求助20
35秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370356
关于积分的说明 10463000
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700346
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770472