机械转化
生物
细胞生物学
干细胞
拉明
核心
祖细胞
细胞骨架
核板
神经科学
核蛋白
细胞
遗传学
基因
转录因子
作者
Mehdi S. Hamouda,Céline Labouesse,Kevin J. Chalut
标识
DOI:10.1016/j.ceb.2020.05.005
摘要
In development and in homeostatic maintenance of tissues, stem cells and progenitor cells are constantly subjected to forces. These forces can lead to significant changes in gene expression and function of stem cells, mediating self-renewal, lineage specification, and even loss of function. One of the ways that has been proposed to mediate these functional changes in stem cells is nuclear mechanotransduction — the process by which forces are converted to signals in the nucleus. The purpose of this review is to discuss the means by which mechanical signals are transduced into the nucleus, through the linker of nucleoskeleton and cytoskeleton (LINC) complex and other nuclear envelope transmembrane (NET) proteins, which connect the cytoskeleton to the nucleus. We discuss how LINC/NETs confers tissue-specific mechanosensitivity to cells and further elucidate how LINC/NETs acts as a control center for nuclear mechanical signals, regulating both gene expression and chromatin organization. Throughout, we primarily focus on stem cell–specific examples, notwithstanding that this is a nascent field. We conclude by highlighting open questions and pointing the way to enhanced research efforts to understand the role nuclear mechanotransduction plays in cell fate choice.
科研通智能强力驱动
Strongly Powered by AbleSci AI