Highly tough, stretchable and resilient hydrogels strengthened with molecular springs and their application as a wearable, flexible sensor

自愈水凝胶 可穿戴计算机 可穿戴技术 材料科学 纳米技术 工程类 嵌入式系统 高分子化学
作者
Rui Liu,Haozheng Wang,Wenjun Lü,Lei Cui,Sha Wang,Yafei Wang,Qianbing Chen,Ying Guan,Yongjun Zhang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:415: 128839-128839 被引量:84
标识
DOI:10.1016/j.cej.2021.128839
摘要

Numerous mechanically strong synthetic hydrogels have been developed in recent years; however, few of them are both tough and resilient like living tissues such as muscles. The intrinsically contradictory requirements for toughness and resilience make it a big challenge to design a gel with both high toughness and high resilience. To solve the problem here helical peptide chains are introduced into hydrogel networks by crosslinking the gel with peptide crosslinkers. The resulting hydrogel networks have a reduced inhomogeneity because of the low concentration and large size of the peptide crosslinkers. In addition, under stress the helical chains can be stretched to elongated ones and the intramolecular hydrogen bonds stabilizing the helical structures will be broken, providing a novel mechanism for energy dissipation. Therefore, the peptide-crosslinked hydrogels present significantly improved mechanical strength and extensibility. Unlike the previously used mechanisms for energy dissipation, here the intramolecular hydrogen bonds and hence the helical structure reform instantly when unloaded, leading to a small hysteresis loop and high resilience (>94%). The helical peptide chains in the network act like molecule-sized springs, absorbing and storing mechanical energy when deformed but releasing it when the stress is removed. Therefore, high toughness and resilience are achieved simultaneously. Wearable, flexible strain/pressure sensors were successfully fabricated using the gels. Thanks to the high resilience of the gels, the sensors are highly reliable with unprecedentedly stable baseline and highly reproducible signal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李怼怼发布了新的文献求助10
1秒前
喜悦的向日葵完成签到,获得积分10
1秒前
无限凝芙关注了科研通微信公众号
2秒前
Heaven发布了新的文献求助30
2秒前
旷野完成签到 ,获得积分10
3秒前
小二郎应助稚生w采纳,获得10
3秒前
活力忆雪完成签到,获得积分10
3秒前
4秒前
彭于晏应助聪慧若风采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
清秀曼彤发布了新的文献求助10
4秒前
星辰大海应助赵兴宇采纳,获得10
4秒前
VelesAlexei完成签到,获得积分10
5秒前
科目三应助若水采纳,获得10
5秒前
上官若男应助朴实水壶采纳,获得10
5秒前
6秒前
SciGPT应助正直凛采纳,获得10
6秒前
小鹿完成签到,获得积分10
6秒前
solitude发布了新的文献求助10
6秒前
明理毛衣发布了新的文献求助20
6秒前
烟花应助樱悼柳雪采纳,获得10
7秒前
情怀应助bruce采纳,获得10
7秒前
8秒前
小鹿发布了新的文献求助10
9秒前
我是老大应助李怼怼采纳,获得10
9秒前
海鲭发布了新的文献求助10
9秒前
两周前完成签到,获得积分10
9秒前
科研通AI6应助称心誉采纳,获得10
9秒前
清秀曼彤完成签到,获得积分20
10秒前
SY完成签到 ,获得积分10
10秒前
11秒前
11秒前
脑洞疼应助彩色的续采纳,获得10
12秒前
皮肤科王东明完成签到,获得积分10
13秒前
13秒前
清秀的小刺猬应助末末采纳,获得70
13秒前
rose关注了科研通微信公众号
13秒前
13秒前
呆萌的菠萝应助山茶花采纳,获得10
13秒前
寒霜扬名完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662339
求助须知:如何正确求助?哪些是违规求助? 4841915
关于积分的说明 15099227
捐赠科研通 4820774
什么是DOI,文献DOI怎么找? 2580225
邀请新用户注册赠送积分活动 1534281
关于科研通互助平台的介绍 1492959