亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Neuroimaging Biomarkers for Antidepressant Selection in Early Treatment of Depression

重性抑郁障碍 抗抑郁药 神经影像学 磁共振弥散成像 医学 内科学 心理学 精神科 磁共振成像 放射科 心情 焦虑
作者
Xue Li,Cong Pei,Xinyi Wang,Huan Wang,Shui Tian,Zhijian Yao,Qing Lü
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:54 (2): 551-559 被引量:11
标识
DOI:10.1002/jmri.27577
摘要

Background Due to the biological heterogeneity, 60%–70% of patients with major depressive disorder (MDD) do not respond to or achieve remission from first‐line antidepressants. Predicting neuroimaging biomarkers for early antidepressant treatment could guide initial antidepressant therapy. Purpose To assess for neuroimaging biomarkers for antidepressant selection in early antidepressant treatment. Study Type Prospective. Subjects A total of 85 MDD patients from the major site and 33 MDD patients from an out‐of‐sample test site. Field Strength/Sequence A 3.0 T, T1‐weighted imaging using a magnetization‐prepared rapid acquisition gradient‐echo sequence and diffusion tensor imaging ( DTI ) using an echo‐planar sequence. Assessment Baseline DTI data of patients who achieved early improvement after 2‐weeks of antidepressant treatment (selective serotonin reuptake inhibitors [SSRI] or serotonin‐norepinephrine reuptake inhibitors [SNRI]) were analyzed. An ensemble model was constructed using data from the major site and then applied to assess the early response of patients at the out‐of‐sample test site. Statistical Tests Support vector machine combined with leave‐one‐out cross‐validation were applied to construct the whole model from individual base models from different brain regions. Discriminative biomarkers were evaluated by calculating the changes in sensitivity and specificity obtained when removing a single base model from the whole model, the base model being removed changing in each run. Results Training performance over MDD patients at the major site achieved 75% accuracy while performance with accuracy of 70% was achieved in the out‐of‐sample test site. Assessing sensitivity and specificity changes following the removal of single base models from the prominent model highlighted the functions of two neural circuitries: SSRI‐related emotion regulation circuitry, centered on the hippocampus (sensitivity changes: 10%) and amygdala (sensitivity changes: 11%); and SNRI‐related emotion and reward circuitry, centered on the putamen (specificity changes: 8%) and orbital part of superior frontal gyrus (specificity changes: 12%). Data Conclusion These findings support future research on clinical antidepressant selection for MDD. Evidence Level 1 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张翰林关注了科研通微信公众号
18秒前
21秒前
35秒前
国色不染尘完成签到,获得积分10
49秒前
56秒前
jqliu完成签到 ,获得积分10
57秒前
1分钟前
hms发布了新的文献求助10
2分钟前
2分钟前
华仔应助andrele采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得30
2分钟前
3分钟前
3分钟前
3分钟前
4分钟前
汉堡包完成签到,获得积分10
4分钟前
张佳明完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
SciGPT应助郭小宝采纳,获得10
5分钟前
lll完成签到,获得积分20
5分钟前
5分钟前
科研通AI5应助非洲大象采纳,获得50
5分钟前
内啡呔完成签到,获得积分20
5分钟前
郭小宝发布了新的文献求助10
5分钟前
CodeCraft应助罗罗子采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
罗罗子发布了新的文献求助10
5分钟前
橙子味的邱憨憨完成签到 ,获得积分10
6分钟前
6分钟前
罗罗子完成签到,获得积分20
6分钟前
Yuna96发布了新的文献求助10
6分钟前
前程似锦完成签到 ,获得积分10
6分钟前
6分钟前
可爱的函函应助Yuna96采纳,获得10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Happiness in the Nordic World 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3857311
求助须知:如何正确求助?哪些是违规求助? 3399733
关于积分的说明 10613406
捐赠科研通 3121973
什么是DOI,文献DOI怎么找? 1721183
邀请新用户注册赠送积分活动 828920
科研通“疑难数据库(出版商)”最低求助积分说明 777928