Predicting Neuroimaging Biomarkers for Antidepressant Selection in Early Treatment of Depression

重性抑郁障碍 抗抑郁药 神经影像学 磁共振弥散成像 医学 内科学 心理学 精神科 磁共振成像 放射科 心情 焦虑
作者
Xue Li,Cong Pei,Xinyi Wang,Huan Wang,Shui Tian,Zhijian Yao,Qing Lü
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:54 (2): 551-559 被引量:11
标识
DOI:10.1002/jmri.27577
摘要

Background Due to the biological heterogeneity, 60%–70% of patients with major depressive disorder (MDD) do not respond to or achieve remission from first‐line antidepressants. Predicting neuroimaging biomarkers for early antidepressant treatment could guide initial antidepressant therapy. Purpose To assess for neuroimaging biomarkers for antidepressant selection in early antidepressant treatment. Study Type Prospective. Subjects A total of 85 MDD patients from the major site and 33 MDD patients from an out‐of‐sample test site. Field Strength/Sequence A 3.0 T, T1‐weighted imaging using a magnetization‐prepared rapid acquisition gradient‐echo sequence and diffusion tensor imaging ( DTI ) using an echo‐planar sequence. Assessment Baseline DTI data of patients who achieved early improvement after 2‐weeks of antidepressant treatment (selective serotonin reuptake inhibitors [SSRI] or serotonin‐norepinephrine reuptake inhibitors [SNRI]) were analyzed. An ensemble model was constructed using data from the major site and then applied to assess the early response of patients at the out‐of‐sample test site. Statistical Tests Support vector machine combined with leave‐one‐out cross‐validation were applied to construct the whole model from individual base models from different brain regions. Discriminative biomarkers were evaluated by calculating the changes in sensitivity and specificity obtained when removing a single base model from the whole model, the base model being removed changing in each run. Results Training performance over MDD patients at the major site achieved 75% accuracy while performance with accuracy of 70% was achieved in the out‐of‐sample test site. Assessing sensitivity and specificity changes following the removal of single base models from the prominent model highlighted the functions of two neural circuitries: SSRI‐related emotion regulation circuitry, centered on the hippocampus (sensitivity changes: 10%) and amygdala (sensitivity changes: 11%); and SNRI‐related emotion and reward circuitry, centered on the putamen (specificity changes: 8%) and orbital part of superior frontal gyrus (specificity changes: 12%). Data Conclusion These findings support future research on clinical antidepressant selection for MDD. Evidence Level 1 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助愚林2024采纳,获得30
刚刚
萨芬撒完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
科研通AI6应助鸡鱼蚝采纳,获得30
1秒前
子心完成签到,获得积分10
1秒前
2秒前
2秒前
等你下课发布了新的文献求助10
2秒前
3秒前
星辰大海应助忧郁的鱿鱼采纳,获得10
3秒前
3秒前
萨芬撒发布了新的文献求助10
4秒前
4秒前
4秒前
英吉利25发布了新的文献求助10
5秒前
星梦完成签到 ,获得积分10
5秒前
不想干活应助ywb1111采纳,获得30
5秒前
5秒前
6秒前
自由秋荷发布了新的文献求助10
6秒前
冷酷迎曼完成签到,获得积分10
7秒前
7秒前
JIMOUREN发布了新的文献求助10
7秒前
领导范儿应助echo采纳,获得30
7秒前
慕容女士关注了科研通微信公众号
8秒前
MHK发布了新的文献求助10
9秒前
噜噜噜完成签到,获得积分10
9秒前
10秒前
隐形曼青应助王小小采纳,获得10
10秒前
单薄芷容完成签到,获得积分10
11秒前
zyaire829发布了新的文献求助10
11秒前
Hyde发布了新的文献求助30
12秒前
形容词加名词完成签到,获得积分10
12秒前
12秒前
科研通AI6应助任性宛儿采纳,获得30
12秒前
小啦啦3082完成签到,获得积分10
14秒前
千月樱华完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Cement Chemistry Calcium silicates and anhydrous Portland cement 300
菊と刀 日本文化の型 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4369338
求助须知:如何正确求助?哪些是违规求助? 3867662
关于积分的说明 12058970
捐赠科研通 3510299
什么是DOI,文献DOI怎么找? 1926373
邀请新用户注册赠送积分活动 968321
科研通“疑难数据库(出版商)”最低求助积分说明 867415