A Novel Estimation Approach of sEMG-based Joint Movements via RBF Neural Network

计算机科学 人工神经网络 接头(建筑物) 均方误差 人工智能 脚踝 肌电图 均方根 径向基函数 膝关节 模式识别(心理学) 模拟 计算机视觉 物理医学与康复 工程类 数学 统计 医学 外科 病理 电气工程 建筑工程
作者
Gang Wang,Yongbai Liu,Tian Shi,Xiaoqin Duan,Keping Liu,Zhongbo Sun,Long Jin
标识
DOI:10.1109/cac48633.2019.8997245
摘要

In these years, the research of rehabilitation robot has been more and more extensive, among which the key lies in the intention recognition of human body. When the human body moves, the muscles contract will produce certain electric signals, called surface electromyography (sEMG) signals. The sEMG signals can be utilized to estimate human movement intention. The radial basis function (RBF) neural network is adopted to predict the joint angle of healthy people in this paper. The subject sit in a chair and perform leg stretching. Firstly, the sEMG signals of three muscles, namely, rectus femoris (RF), lateral femoral muscle (LF) and extensor halluces (EH) longus are collected through Biopac system, when the subject do exercise. And then the processed signals are used as the input of the network to estimate the three joint angles of human lower limbs through the network learning and training. Root-mean-square (RMS) error is used as the criterion for evaluating the model performance. Through MATLAB simulation experiment, it can be verified that RBF network can effectively estimate the joint angle of human body, among which the RMS error of hip joint is 1.02360, the RMS error of knee joint is 8.07520, and the RMS error of ankle joint is 11.06330 Therefore, the movement intention of human body can be effectively estimated through RBF neural network. In other words, using sEMG signals as input, the movement intention of the lower limbs of human can be estimated via the RBF neural network. Furthermore, the method can be generalized to the rehabilitation robot and auxiliary robot.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
NexusExplorer应助zc采纳,获得10
3秒前
瀼瀼发布了新的文献求助10
5秒前
大个应助夏侯幻梦采纳,获得10
6秒前
JXXX发布了新的文献求助10
6秒前
自信寄灵发布了新的文献求助10
7秒前
8秒前
9秒前
风趣安雁完成签到,获得积分10
10秒前
12秒前
我叫过儿发布了新的文献求助10
13秒前
包容半鬼发布了新的文献求助10
16秒前
16秒前
CAOHOU应助pping采纳,获得10
16秒前
Lex完成签到,获得积分10
17秒前
清脆南蕾发布了新的文献求助10
17秒前
自信寄灵完成签到,获得积分10
18秒前
纯真大门发布了新的文献求助10
18秒前
天闪御空发布了新的文献求助50
18秒前
喻忆发布了新的文献求助10
20秒前
20秒前
21秒前
英吉利25发布了新的文献求助10
22秒前
健忘的尔白应助ROPZ采纳,获得10
24秒前
妮妮发布了新的文献求助10
24秒前
天堂之光应助逆天大脚采纳,获得20
25秒前
风中尔竹发布了新的文献求助10
25秒前
JXXX完成签到,获得积分10
27秒前
Hello应助科研通管家采纳,获得10
28秒前
李爱国应助科研通管家采纳,获得10
28秒前
所所应助科研通管家采纳,获得10
28秒前
小蘑菇应助科研通管家采纳,获得10
28秒前
ding应助科研通管家采纳,获得10
28秒前
华仔应助科研通管家采纳,获得10
28秒前
bkagyin应助科研通管家采纳,获得10
28秒前
SciGPT应助科研通管家采纳,获得10
28秒前
28秒前
29秒前
29秒前
科目三应助包容半鬼采纳,获得10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Grammar in Action: Building comprehensive grammars of talk-in-interaction 1000
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4195187
求助须知:如何正确求助?哪些是违规求助? 3730806
关于积分的说明 11750719
捐赠科研通 3405781
什么是DOI,文献DOI怎么找? 1868570
邀请新用户注册赠送积分活动 924812
科研通“疑难数据库(出版商)”最低求助积分说明 835532