A Novel Estimation Approach of sEMG-based Joint Movements via RBF Neural Network

计算机科学 人工神经网络 接头(建筑物) 均方误差 人工智能 脚踝 肌电图 均方根 径向基函数 膝关节 模式识别(心理学) 模拟 计算机视觉 物理医学与康复 工程类 数学 统计 医学 建筑工程 电气工程 外科 病理
作者
Gang Wang,Yongbai Liu,Tian Shi,Xiaoqin Duan,Keping Liu,Zhongbo Sun,Long Jin
标识
DOI:10.1109/cac48633.2019.8997245
摘要

In these years, the research of rehabilitation robot has been more and more extensive, among which the key lies in the intention recognition of human body. When the human body moves, the muscles contract will produce certain electric signals, called surface electromyography (sEMG) signals. The sEMG signals can be utilized to estimate human movement intention. The radial basis function (RBF) neural network is adopted to predict the joint angle of healthy people in this paper. The subject sit in a chair and perform leg stretching. Firstly, the sEMG signals of three muscles, namely, rectus femoris (RF), lateral femoral muscle (LF) and extensor halluces (EH) longus are collected through Biopac system, when the subject do exercise. And then the processed signals are used as the input of the network to estimate the three joint angles of human lower limbs through the network learning and training. Root-mean-square (RMS) error is used as the criterion for evaluating the model performance. Through MATLAB simulation experiment, it can be verified that RBF network can effectively estimate the joint angle of human body, among which the RMS error of hip joint is 1.02360, the RMS error of knee joint is 8.07520, and the RMS error of ankle joint is 11.06330 Therefore, the movement intention of human body can be effectively estimated through RBF neural network. In other words, using sEMG signals as input, the movement intention of the lower limbs of human can be estimated via the RBF neural network. Furthermore, the method can be generalized to the rehabilitation robot and auxiliary robot.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
二十完成签到 ,获得积分10
3秒前
wangyaofeng完成签到,获得积分10
3秒前
void科学家完成签到,获得积分10
3秒前
6秒前
7秒前
njxndnajoasndlas完成签到,获得积分20
8秒前
9秒前
snowwwwwwwwfox完成签到,获得积分10
9秒前
皇甫飞扬完成签到,获得积分10
9秒前
11秒前
登山人发布了新的文献求助10
12秒前
皇甫飞扬发布了新的文献求助10
12秒前
enshun发布了新的文献求助10
12秒前
13秒前
小小发布了新的文献求助30
14秒前
小蘑菇应助ll200207采纳,获得10
17秒前
IleraYoung发布了新的文献求助10
19秒前
21秒前
思源应助酚酞v采纳,获得10
25秒前
吴兰田完成签到,获得积分10
25秒前
丰富的以筠完成签到,获得积分10
26秒前
呆萌的悲发布了新的文献求助30
27秒前
顾矜应助Sea_U采纳,获得10
29秒前
ywzwszl发布了新的文献求助10
31秒前
aprilvanilla完成签到,获得积分10
31秒前
罐装冰块完成签到,获得积分10
31秒前
小小完成签到,获得积分10
33秒前
勇者先享受生活完成签到 ,获得积分10
35秒前
35秒前
cmuz发布了新的文献求助10
40秒前
科研通AI5应助呆萌的悲采纳,获得80
41秒前
都暻秀女朋友完成签到,获得积分10
41秒前
44秒前
英姑应助赫连紫采纳,获得10
45秒前
我是老大应助BareBear采纳,获得10
47秒前
48秒前
Xiao完成签到,获得积分10
48秒前
49秒前
健壮的书桃关注了科研通微信公众号
50秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742