On the Importance of an Acid Additive in the Synthesis of Pyrido[1,2‐a]benzimidazoles by Direct Copper‐Catalyzed Amination

胺化 催化作用 分子内力 化学 组合化学 模块化设计 有机化学 计算机科学 操作系统
作者
Kye‐Simeon Masters,Tom R. M. Rauws,Ashok Kumar Yadav,Wouter Herrebout,Benjamin van der Veken,Bert U. W. Maes
出处
期刊:Chemistry: A European Journal [Wiley]
卷期号:17 (23): 6315-6320 被引量:130
标识
DOI:10.1002/chem.201100574
摘要

Chemistry – A European JournalVolume 17, Issue 23 p. 6315-6320 Communication On the Importance of an Acid Additive in the Synthesis of Pyrido[1,2-a]benzimidazoles by Direct Copper-Catalyzed Amination Dr. Kye-Simeon Masters, Dr. Kye-Simeon Masters Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorTom R. M. Rauws, Tom R. M. Rauws Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorDr. Ashok K. Yadav, Dr. Ashok K. Yadav Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorProf. Dr. Wouter A. Herrebout, Prof. Dr. Wouter A. Herrebout Cryospectroscopy, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)Search for more papers by this authorProf. Dr. Benjamin Van der Veken, Prof. Dr. Benjamin Van der Veken Cryospectroscopy, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)Search for more papers by this authorProf. Dr. Bert U. W. Maes, Corresponding Author Prof. Dr. Bert U. W. Maes [email protected] Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this author Dr. Kye-Simeon Masters, Dr. Kye-Simeon Masters Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorTom R. M. Rauws, Tom R. M. Rauws Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorDr. Ashok K. Yadav, Dr. Ashok K. Yadav Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this authorProf. Dr. Wouter A. Herrebout, Prof. Dr. Wouter A. Herrebout Cryospectroscopy, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)Search for more papers by this authorProf. Dr. Benjamin Van der Veken, Prof. Dr. Benjamin Van der Veken Cryospectroscopy, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)Search for more papers by this authorProf. Dr. Bert U. W. Maes, Corresponding Author Prof. Dr. Bert U. W. Maes [email protected] Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), Fax: (+32) 32653233Search for more papers by this author First published: 20 April 2011 https://doi.org/10.1002/chem.201100574Citations: 125Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Not just an acid! An expedient and highly modular synthesis of 6-, 7-, and 8-substituted pyrido[1,2-a]benzimidazoles (4) has been developed by a direct intramolecular CH amination of N-phenylpyridin-2-amines (3). Efficient CH amination of 3 could only be achieved in the presence of catalytic copper and an acid additive. The type of acid (pKa) proved to be crucial for the catalysis. CCl aminations in N-(2-chloroaryl)pyridin-2-amines allow access to 9-substituted pyrido[1,2-a]benzimidazoles. Supporting Information Detailed facts of importance to specialist readers are published as "Supporting Information". Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description chem_201100574_sm_miscellaneous_information.pdf1.3 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1G. Tennant, The Chemistry of Heterocyclic Compounds, Vol. 40 (Eds.: ), Wiley-Interscience, New York, 1980, pp. 257–461. 2For routes to specifically substituted pyrido[1,2-a]benzimidazoles, see: 2aS. V. Ryabukhin, A. S. Plaskon, D. M. Volochnyuk, A. A. Tolmachev, Synthesis 2007, 3155–3162; 2bC. G. Yan, Q. F. Wang, X. K. Song, J. Sun, J. Org. Chem. 2009, 74, 710–718; 2cK. Panda, J. R. Suresh, H. Ila, H. Junjappa, J. Org. Chem. 2003, 68, 3498–3506. 3Anticancer: 3aM. Sedic, M. Poznic, P. Gehrig, M. Scott, R. Schlapbach, M. Hranjec, G. Karminski-Zamola, K. Pavelic, S. Kraljevic, Mol. Canc. Therap. 2008, 7, 2121–2132; 3bS. A. M. El-Hawash, E.-S. A. M. Badawey, T. Kappe, Pharmazie 1999, 54, 341–345; 3cM. Dupuy, F. Pinguet, O. Chavignon, J.-M. Chezal, J.-C. Chapat, Y. Blache, Chem. Pharm. Bull. 2001, 49, 1061–1065. 4As Ca2+ releasers in skeletal muscle: Y. Takahashi, K.-I. Furakawa, M. Ishibashi, D. Kozutsumi, H. Ishiyama, J. Kobayashi, Y. Ohizumi, Eur. J. Pharmacol., Mol. Pharmacol. Sect. 1995, 288, 285–293. 5Rifaximin, containing the pyrido[1,2-a]benzimidazole core, is a unique gastrointestinal-selective antibiotic for enteric diseases: H. L. Koo, H. L. Dupont, Curr. Opin. Gastroenterol. 2010, 26, 17–25. 6Alteration of the lifespan of eukaryotic organisms: D. F. Goldfarb (University of Rochester, Rochester), US 2009163545, 2009. 7Solubility: 94 mg of 4 a dissolves in 100 mL of distilled H2O at 20 °C; 592 mg at 100 °C. 8Fluorescence: 8aE. N. Smirnova, T. V. Onschenskaya, V. P. Zvolinskii, D. L. Nénde, Fiz. Khim. Poverkhn. 1988, 65–72; 8bJ.-S. Bae, D.-W. Lee, D.-H. Lee, D.-S. Jeong (LG Chem. Ltd, Seoul), WO2007011163A1, 2007. Fluorescent dyes: 8cR. Erckel, D. Günther, H. Frühbeis (Hoechst AG., Frankfurt), DE2640760A1, 1978; [ Chem. Abstr. 1978, 89, 7595]. Dyes: 8dE. Schefzcik (BASF AG., Ludwigshafen), DE2701659A1, 1978; 8eJ. Denhert, G. Lamm (BASF AG., Ludwigshafen), DE2022817, 1972. 9 9aK. T. J. Loones, B. U. W. Maes, R. A. Dommisse, G. L. F. Lemière, Chem. Commun. 2004, 2466–2467; 9bK. T. J. Loones, B. U. W. Maes, C. Meyers, J. Deruytter, J. Org. Chem. 2006, 71, 260–264; 9cK. T. J. Loones, B. U. W. Maes, W. A. Herrebout, R. A. Dommisse, R. A., G. L. F. Lemière, B. J. Van der Veken, Tetrahedron 2007, 63, 3818–3825; 9dK. T. J. Loones, B. U. W. Maes, R. A. Dommisse, Tetrahedron 2007, 63, 8954–8961; 9eT. R. M. Rauws, C. Biancalani, J. W. De Schutter, B. U. W. Maes, Tetrahedron 2010, 66, 6958–6964. 10 10aA. S. Guram, R. A. Rennels, S. L. Buchwald, Angew. Chem. 1995, 107, 1456–1459; Angew. Chem. Int. Ed. Engl. 1995, 34, 1348–1350; 10bJ. Louie, J. F. Hartwig, Tetrahedron Lett. 1995, 36, 3609–3612. 11For examples dealing with Pd-catalyzed amination on 2-chloropyridines, see: 11aT. H. M. Jonckers, B. U. W. Maes, G. L. F. Lemière, R. Dommisse, Tetrahedron 2001, 57, 7027–7034; 11bK. W. Anderson, R. E. Tundel, T. Ikawa, R. A. Altman, S. L. Buchwald, Angew. Chem. 2006, 118, 6673–6677; Angew. Chem. Int. Ed. 2006, 45, 6523–6527; 11cS. Hostyn, G. Van Baelen, G. L. F. Lemière, B. U. W. Maes, Adv. Synth. Catal. 2008, 350, 2653–2660; 11dQ. Shen, T. Ogata, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 6586–65956. 12For selected reviews dealing with CH functionalization, see: 12aF. Collet, R. H. Dodd, P. Dauban, Chem. Commun. 2009, 5061–5074; 12bO. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42, 1074–1086; 12cX. Chen, K. M. Engle, D.-H. Wang, J. Q. Yu, Angew. Chem. 2009, 121, 5196–5217; Angew. Chem. Int. Ed. 2009, 48, 5094–5115; 12dP. Thansandote, M. Lautens, Chem. Eur. J. 2009, 15, 5874–5883; 12eL. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. 2009, 121, 9976–10011; Angew. Chem. Int. Ed. 2009, 48, 9792–9826; 12fJ. C. Lewis, R. E. Bergman, J. A. Ellman, Acc. Chem. Res. 2008, 41, 1013–1025; 12gB.-J. Li, S.-D. Yang, Z.-J. Shi, Synlett 2008, 949–957; 12hY. J. Park, J.-W. Park, C.-H. Jun, Acc. Chem. Res. 2008, 41, 222–234; 12iL.-C. Campeau, D. R. Stuart, K. Fagnou, Aldrichimica Acta 2007, 40, 35–41; 12jD. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174–238; 12kL. Ackermann, Top. Organomet. Chem. 2007, 24, 35–60; 12lK. R. Campos, Chem. Soc. Rev. 2007, 36, 1069–1084; 12mI. Seregin, V. Gevorgyan, Chem. Soc. Rev. 2007, 36, 1173–1193; 12nL. C. Campeau, K. Fagnou, Chem. Commun. 2006, 1253–1264; 12oK. Godula, D. Sames, Science 2006, 312, 67–72; 12pA. R. Dick, M. S. Sanford, Tetrahedron 2006, 62, 2439–2463. 13For a review of CH functionalization by metal nitrenoid insertion, see: 13aH. M. L. Davies, J. R. Manning, Nature 2008, 451, 417–424. For an example involving nitrogen activation via oxidative addition, see: 13bY. Tan, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 3676–3677. 14 14aJ. A. Jordan-Hore, C. C. C. Johansson, M. Gulias, E. M. Beck, M. J. Gaunt, J. Am. Chem. Soc. 2008, 130, 16184–16186; 14bM. Wasa, J. Q. Yu, J. Am. Chem. Soc. 2008, 130, 14058–14059; 14cT.-S. Mei, X. Wang, J.-Q. Yu, J. Am. Chem. Soc. 2009, 131, 10806–10807; 14dW. C. P. Tsang, N. Zheng, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 14560–14561; 14eW. C. P. Tsang, R. H. Munday, G. Brasche, N. Zheng, S. L. Buchwald, J. Org. Chem. 2008, 73, 7603–7610; 14fK. Orito, A. Horibata, T. Nakamura, H. Ushito, H. Nagasaki, M. Yuguchi, S. Yamashita, M. Tokuda, J. Am. Chem. Soc. 2004, 126, 14342–14343; 14gG. Brasche, S. L. Buchwald, Angew. Chem. 2008, 120, 1958–1960; Angew. Chem. Int. Ed. 2008, 47, 1932–1934; 14hQ. Xiao, W.-H. Wang, G. Liu, F.-K. Meng, J.-H. Chen, Z. Yang, Z.-J. Shi, Chem. Eur. J. 2009, 15, 7292–7296; 14iL. Zhang, G. Y. Ang, S. Chiba, Org. Lett. 2010, 12, 3682–3685; 14jK. Inamoto, T. Saito, M. Katsuno, T. Sakamoto, K. Hiroya, Org. Lett. 2007, 9, 2931–2934; K. Inamoto, T. Saito, K. Hiroya, T. Doi, J. Org. Chem. 2010, 75, 3900–3903; 14kN. Guimond, C. Gouliaras, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 6908–6909. 15See Supporting Information. 16For example, 1,10-phenanthroline. 17For the importance of the type of acid as solvent (PivOH) in Pd-catalyzed intramolecular oxidative biaryl synthesis, see: B. Liegault, D. Lee, M. P. Huestis, D. R. Stuart, K. Fagnou, J. Org. Chem. 2008, 73, 5022–5028. 18Upon mixing the reagents at room temperature a better solubility of CuII(OAc)2 was observed in the presence of benzoic acids versus acetic acid.[15] 19For application of such conditions to the synthesis of benzoxazoles and benzothiazoles, see: 19aN. Barbero, M. Carril, R. SanMartin, E. Domínguez, Tetrahedron 2007, 63, 10425–10432; 19bJ. H. Spatz, T. Bach, M. Umkkehrer, J. Bardin, G. Ross, C. Burdack, J. Kolb, Tetrahedron Lett. 2007, 48, 9030–9034; 19cG. Evindar, R. A. Batey, J. Org. Chem. 2006, 71, 1802–1808. 20For an intramolecular amination process with stoichiometric CuI salts and iodide or bromide substrates, see: K. Yamada, T. Kubo, H. Tokuyama, T. Fukuyama, Synlett 2002, 0231–0234. 21For amination processes on aryl iodides and bromides with catalytic CuI salts and ligands, see: 21aH.-J. Cristau, P. P. Cellier, J.-F. Spindler, M. Taillefer, Chem. Eur. J. 2004, 10, 5607–5622; 21bA. Klapars, J. C. Antilla, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 7727–7729; 21cF. Y. Kwong, S. L. Buchwald, Org. Lett. 2003, 5, 793–796; 21dX. Deng, H. McAllister, N. S. Mani, J. Org. Chem. 2009, 74, 5742–5745. 22For a different synthetic route to tetracycle 7, see: C. Venkatesh, G. S. M. Sundaram, H. Ila, H. Junjappa, J. Org. Chem. 2006, 71, 1280–1283. 23KIEs have been observed for Pd-catalyzed intramolecular arylations, see: 23aD. Garcia-Cuadrado, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2006, 128, 1066–1067; 23bD. Garcia-Cuadrado, P. de Mendoza, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2007, 129, 6880–6886. 24A combination of both inter- and intramolecular KIEs can be significantly more informative than either by itself: E. J. Hennessy, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 12084–12085. 25For a similar anti-oxy-cupration in meta-selective copper-catalyzed CH bond arylation with Ph2IX as oxidant, see: R. J. Phipps, M. J. Gaunt, Science 2009, 323, 1593–1597. 26For an example of β-hydride elimination involving CuII species see: G. Franc, A. Jutand, Dalton Trans. 2010, 39, 7873–7875. 27Recently, our research group showed that in direct functionalization via transition-metal-catalyzed reactions the hydrogen atom in the substrate can be finally lost as H2 gas. H. Prokopcová, S. D. Bergman, K. Aelvoet, V. Smout, W. Herrebout, B. Van der Veken, L. Meerpoel, B. U. W. Maes, Chem. Eur. J. 2010, 16, 13063–13067. Raman spectroscopy measurement showed that in the direct aminations studied here, no H2 gas is formed under oxygen free atmosphere (Table 1, entry 24). 28In the Chan–Evans–Lam reaction, CuII acts as a single-electron oxidant: A. E. King, T. C. Brunold, S. S. Stahl, J. Am. Chem. Soc. 2009, 131, 5044–5045. 29For kinetic isotope effects in syn β-hydride elimination, see: 29aJ. Evans, J. Schwartz, P. W. Urquhart, J. Organomet. Chem. 1974, 81, C 37-C39; 29bC. J. Jenks, M. Xi, M. X. Yang, B. E. Bent, J. Phys. Chem. 1994, 98, 2152–2157. 30 30aA comparison of kobsd values can only be done for those reactions with a very high selectivity towards the desired reaction product. Otherwise kobsd values do not represent exclusive information on the 3 to 4 transformation. kobsd values were determined for reactions run with 3,4,5-trifluorobenzoic acid as additive. 30bDFT calculations were performed on structures B (Scheme 5), where R=Me. 31H. Wang, Y. Wang, C. Peng, J. Zhang, Q. Zhu, J. Am. Chem. Soc. 2010, 132, 13217–13219. Citing Literature Volume17, Issue23May 27, 2011Pages 6315-6320 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ly完成签到 ,获得积分10
4秒前
guangshuang完成签到 ,获得积分10
8秒前
licheng完成签到,获得积分10
9秒前
btcat完成签到,获得积分10
14秒前
ramsey33完成签到 ,获得积分10
16秒前
llllzzh完成签到 ,获得积分10
23秒前
lyx完成签到 ,获得积分10
29秒前
十二完成签到 ,获得积分10
41秒前
lyz完成签到,获得积分10
45秒前
future完成签到 ,获得积分10
45秒前
含糊的无声完成签到 ,获得积分10
48秒前
墨墨完成签到 ,获得积分10
51秒前
雨前知了完成签到,获得积分10
52秒前
落山姬完成签到,获得积分10
1分钟前
老西瓜完成签到,获得积分10
1分钟前
共享精神应助Echoheart采纳,获得10
1分钟前
jasmine完成签到 ,获得积分10
1分钟前
玄音完成签到,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
1分钟前
luogan完成签到,获得积分10
1分钟前
1分钟前
在水一方应助矢思然采纳,获得10
1分钟前
XZZ完成签到 ,获得积分10
1分钟前
Echoheart发布了新的文献求助10
1分钟前
1分钟前
石子完成签到 ,获得积分10
1分钟前
矢思然发布了新的文献求助10
1分钟前
吃小孩的妖怪完成签到 ,获得积分10
2分钟前
拜拜拜仁完成签到,获得积分10
2分钟前
HoHo完成签到 ,获得积分10
2分钟前
勤奋幻天完成签到 ,获得积分10
2分钟前
学习使勇哥进步完成签到 ,获得积分10
2分钟前
guijunmola完成签到 ,获得积分10
2分钟前
小牛完成签到 ,获得积分10
2分钟前
tmobiusx完成签到,获得积分10
2分钟前
eternal_dreams完成签到 ,获得积分10
2分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800967
求助须知:如何正确求助?哪些是违规求助? 3346521
关于积分的说明 10329523
捐赠科研通 3063031
什么是DOI,文献DOI怎么找? 1681330
邀请新用户注册赠送积分活动 807474
科研通“疑难数据库(出版商)”最低求助积分说明 763721