已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UHR-DeepFMT: Ultra-High Spatial Resolution Reconstruction of Fluorescence Molecular Tomography Based on 3-D Fusion Dual-Sampling Deep Neural Network

人工智能 模式识别(心理学) 计算机视觉 图像融合 荧光寿命成像显微镜 融合 断层摄影术 重建算法 深度学习
作者
Peng Zhang,Guangda Fan,Tongtong Xing,Fan Song,Guanglei Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (11): 3217-3228 被引量:1
标识
DOI:10.1109/tmi.2021.3071556
摘要

Fluorescence molecular tomography (FMT) is a promising and high sensitivity imaging modality that can reconstruct the three-dimensional (3D) distribution of interior fluorescent sources. However, the spatial resolution of FMT has encountered an insurmountable bottleneck and cannot be substantially improved, due to the simplified forward model and the severely ill-posed inverse problem. In this work, a 3D fusion dual-sampling convolutional neural network, namely UHR-DeepFMT, was proposed to achieve ultra-high spatial resolution reconstruction of FMT. Under this framework, the UHR-DeepFMT does not need to explicitly solve the FMT forward and inverse problems. Instead, it directly establishes an end-to-end mapping model to reconstruct the fluorescent sources, which can enormously eliminate the modeling errors. Besides, a novel fusion mechanism that integrates the dual-sampling strategy and the squeeze-and-excitation (SE) module is introduced into the skip connection of UHR-DeepFMT, which can significantly improve the spatial resolution by greatly alleviating the ill-posedness of the inverse problem. To evaluate the performance of UHR-DeepFMT network model, numerical simulations, physical phantom and in vivo experiments were conducted. The results demonstrated that the proposed UHR-DeepFMT can outperform the cutting-edge methods and achieve ultra-high spatial resolution reconstruction of FMT with the powerful ability to distinguish adjacent targets with a minimal edge-to-edge distance (EED) of 0.5 mm. It is assumed that this research is a significant improvement for FMT in terms of spatial resolution and overall imaging quality, which could promote the precise diagnosis and preclinical application of small animals in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
石中酒发布了新的文献求助10
4秒前
石中酒发布了新的文献求助10
5秒前
小马甲应助亿眼万年采纳,获得10
5秒前
石中酒发布了新的文献求助10
5秒前
浮游应助侃侃采纳,获得10
6秒前
xxn完成签到 ,获得积分10
7秒前
9秒前
健壮慕梅完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
14秒前
正直纸鹤完成签到,获得积分10
14秒前
Catherine_Song完成签到 ,获得积分10
15秒前
CipherSage应助ceng采纳,获得10
16秒前
16秒前
共享精神应助Harrison采纳,获得10
17秒前
亿眼万年发布了新的文献求助10
18秒前
叁叁肆发布了新的文献求助10
18秒前
Pomelo发布了新的文献求助10
19秒前
科研通AI6应助兴奋的天蓉采纳,获得10
20秒前
大个应助查重率咋一百采纳,获得10
22秒前
25秒前
26秒前
叁叁肆完成签到,获得积分10
26秒前
阿斯顿风格完成签到,获得积分10
27秒前
28秒前
lele发布了新的文献求助10
29秒前
浮游应助半喇柯基采纳,获得10
29秒前
羊_应助纯氧采纳,获得30
30秒前
ceng发布了新的文献求助10
30秒前
鬲木完成签到,获得积分20
31秒前
31秒前
changping应助程艾影采纳,获得10
32秒前
32秒前
千葉发布了新的文献求助10
34秒前
苏从筠发布了新的文献求助10
34秒前
laipuling发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076248
求助须知:如何正确求助?哪些是违规求助? 4295778
关于积分的说明 13385599
捐赠科研通 4117660
什么是DOI,文献DOI怎么找? 2254921
邀请新用户注册赠送积分活动 1259516
关于科研通互助平台的介绍 1192311