Stay Home or Not? Modeling Individuals’ Decisions During the COVID-19 Pandemic

大流行 地球仪 人口 公共卫生 中国 决策模型 2019年冠状病毒病(COVID-19) 精算学 业务 运筹学 心理学 医学 政治学 经济 环境卫生 工程类 护理部 神经科学 数理经济学 法学 传染病(医学专业) 病理 疾病
作者
Qifeng Wan,Xuanhua Xu,Kyle Hunt,Jun Zhuang
出处
期刊:Decision Analysis [Institute for Operations Research and the Management Sciences]
卷期号:19 (4): 319-336 被引量:7
标识
DOI:10.1287/deca.2021.0437
摘要

During the COVID-19 pandemic, staying home proved to be an effective way to mitigate the spread of the virus. Stay-at-home orders and guidelines were issued by governments across the globe and were followed by a large portion of the population in the early stages of the outbreak when there was a lack of COVID-specific medical knowledge. The decision of whether to stay home came with many trade-offs, such as risking personal exposure to the virus when leaving home or facing financial and mental health burdens when remaining home. In this research, we study how individuals make strategic decisions to balance these conflicting outcomes. We present a model to study individuals’ decision making based on decision and prospect theory, and we conduct sensitivity analysis to study the fluctuations in optimal strategies when there are changes made to the model’s parameters. A Monte Carlo simulation is implemented to further study the performance of our model, and we compare our simulation results with real data that captures individuals’ stay-at-home decisions. Overall, this research models and analyzes the behaviors of individuals during the COVID-19 pandemic and can help support decision making regarding control measures and policy development when public health emergencies appear in the future. History: This article was accepted for the Decision Analysis Special Issue on Emerging Topics in Health. Funding: The first two authors’ efforts were supported by the National Natural Science Foundation of China [Grants 71971217 and 71671189], the Key Project of Natural Science Foundation of China [Grants 71790615 and 91846301], and the Independent Exploration of Innovation Project for Postgraduate of Central South University [Grant 2019zzts843]. The third author’s effort was partially supported by the U.S. National Science Foundation Graduate Research Fellowship Program [Grant 2043091].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lang777完成签到 ,获得积分20
刚刚
隐形曼青应助sun采纳,获得10
1秒前
2秒前
younger完成签到,获得积分10
4秒前
sunny完成签到,获得积分10
4秒前
婷123完成签到 ,获得积分10
7秒前
7秒前
小蘑菇应助傻傻的芝采纳,获得10
7秒前
ylj1531585955发布了新的文献求助10
7秒前
9秒前
10秒前
小二郎应助一禾采纳,获得10
10秒前
11秒前
粥粥发布了新的文献求助10
13秒前
13秒前
13秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
14秒前
喵呜发布了新的文献求助10
14秒前
boom完成签到 ,获得积分10
15秒前
BOBO发布了新的文献求助10
16秒前
歼击机88发布了新的文献求助10
16秒前
18秒前
KKK研发布了新的文献求助30
19秒前
19秒前
兵哥给兵哥的求助进行了留言
21秒前
FashionBoy应助山城小丸采纳,获得10
22秒前
一禾完成签到,获得积分10
22秒前
22秒前
tong77完成签到 ,获得积分10
24秒前
pluto应助Wind采纳,获得20
24秒前
24秒前
大个应助野性的鹭洋采纳,获得10
24秒前
喵呜完成签到,获得积分10
25秒前
一禾发布了新的文献求助10
25秒前
27秒前
史小霜发布了新的文献求助10
30秒前
笨笨善若完成签到,获得积分10
31秒前
65岁熬夜上网完成签到,获得积分10
31秒前
领导范儿应助歼击机88采纳,获得10
32秒前
蘇尼Ai完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781804
求助须知:如何正确求助?哪些是违规求助? 3327400
关于积分的说明 10230835
捐赠科研通 3042271
什么是DOI,文献DOI怎么找? 1669937
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804