亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiclass CBCT Image Segmentation for Orthodontics with Deep Learning

分割 人工智能 计算机科学 牙科 口腔正畸科 医学 计算机视觉
作者
H. Wang,Jordi Minnema,Kees Joost Batenburg,Tymour Forouzanfar,Fengjun Hu,Guangming Wu
出处
期刊:Journal of Dental Research [SAGE]
卷期号:100 (9): 943-949 被引量:133
标识
DOI:10.1177/00220345211005338
摘要

Accurate segmentation of the jaw (i.e., mandible and maxilla) and the teeth in cone beam computed tomography (CBCT) scans is essential for orthodontic diagnosis and treatment planning. Although various (semi)automated methods have been proposed to segment the jaw or the teeth, there is still a lack of fully automated segmentation methods that can simultaneously segment both anatomic structures in CBCT scans (i.e., multiclass segmentation). In this study, we aimed to train and validate a mixed-scale dense (MS-D) convolutional neural network for multiclass segmentation of the jaw, the teeth, and the background in CBCT scans. Thirty CBCT scans were obtained from patients who had undergone orthodontic treatment. Gold standard segmentation labels were manually created by 4 dentists. As a benchmark, we also evaluated MS-D networks that segmented the jaw or the teeth (i.e., binary segmentation). All segmented CBCT scans were converted to virtual 3-dimensional (3D) models. The segmentation performance of all trained MS-D networks was assessed by the Dice similarity coefficient and surface deviation. The CBCT scans segmented by the MS-D network demonstrated a large overlap with the gold standard segmentations (Dice similarity coefficient: 0.934 ± 0.019, jaw; 0.945 ± 0.021, teeth). The MS-D network-based 3D models of the jaw and the teeth showed minor surface deviations when compared with the corresponding gold standard 3D models (0.390 ± 0.093 mm, jaw; 0.204 ± 0.061 mm, teeth). The MS-D network took approximately 25 s to segment 1 CBCT scan, whereas manual segmentation took about 5 h. This study showed that multiclass segmentation of jaw and teeth was accurate and its performance was comparable to binary segmentation. The MS-D network trained for multiclass segmentation would therefore make patient-specific orthodontic treatment more feasible by strongly reducing the time required to segment multiple anatomic structures in CBCT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多情的如冰完成签到 ,获得积分10
2秒前
lwtsy完成签到,获得积分10
3秒前
伶俐海安完成签到 ,获得积分10
4秒前
9秒前
nolan完成签到 ,获得积分10
10秒前
天外来物完成签到,获得积分10
12秒前
hui完成签到,获得积分20
13秒前
可靠的一手完成签到 ,获得积分10
13秒前
lwtsy发布了新的文献求助10
13秒前
张小仙发布了新的文献求助10
13秒前
隐形曼青应助酚醛树脂采纳,获得10
15秒前
华仔应助linsen采纳,获得10
17秒前
22秒前
22秒前
22秒前
23秒前
24秒前
星辰大海应助YJ888采纳,获得10
25秒前
木叶发布了新的文献求助10
26秒前
田様应助高高的小之采纳,获得10
26秒前
xxwyj发布了新的文献求助10
27秒前
31秒前
独特元柏完成签到,获得积分10
36秒前
37秒前
38秒前
leave完成签到 ,获得积分0
40秒前
浮浮世世发布了新的文献求助150
44秒前
泠漓完成签到 ,获得积分10
47秒前
一粟完成签到 ,获得积分10
47秒前
50秒前
万能图书馆应助木叶采纳,获得10
50秒前
51秒前
科研通AI6应助花开的声音采纳,获得10
52秒前
牛八先生完成签到,获得积分10
53秒前
linsen发布了新的文献求助10
54秒前
ckx完成签到 ,获得积分10
55秒前
56秒前
CipherSage应助yzizz采纳,获得10
56秒前
小蘑菇应助shangxinyu采纳,获得10
58秒前
Moo5_zzZ发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543024
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610916
捐赠科研通 4570411
什么是DOI,文献DOI怎么找? 2505751
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454364