Decoding Pigeon Behavior Outcomes Using Functional Connections among Local Field Potentials.

领域(数学) 感觉系统
作者
Yan Chen,Xinyu Liu,Shan Li,Hong Wan
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Publishing Corporation]
卷期号:2018: 3505371-3505371 被引量:4
标识
DOI:10.1155/2018/3505371
摘要

Recent studies indicate that the local field potential (LFP) carries information about an animal's behavior, but issues regarding whether there are any relationships between the LFP functional networks and behavior tasks as well as whether it is possible to employ LFP network features to decode the behavioral outcome in a single trial remain unresolved. In this study, we developed a network-based method to decode the behavioral outcomes in pigeons by using the functional connectivity strength values among LFPs recorded from the nidopallium caudolaterale (NCL). In our method, the functional connectivity strengths were first computed based on the synchronization likelihood. Second, the strength values were unwrapped into row vectors and their dimensions were then reduced by principal component analysis. Finally, the behavioral outcomes in single trials were decoded using leave-one-out combined with the k-nearest neighbor method. The results showed that the LFP functional network based on the gamma-band was related to the goal-directed behavior of pigeons. Moreover, the accuracy of the network features (74 ± 8%) was significantly higher than that of the power features (61 ± 12%). The proposed method provides a powerful tool for decoding animal behavior outcomes using a neural functional network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiesenya完成签到,获得积分10
刚刚
李爱国应助谜湖采纳,获得10
1秒前
1秒前
猪猪侠完成签到,获得积分10
1秒前
2秒前
LHNini发布了新的文献求助10
3秒前
l玖应助myn1990采纳,获得10
3秒前
优美的朝雪完成签到,获得积分10
3秒前
1111发布了新的文献求助10
3秒前
科研通AI5应助和花花采纳,获得10
4秒前
4秒前
Chen完成签到,获得积分10
4秒前
陈强发布了新的文献求助10
5秒前
shadow发布了新的文献求助10
5秒前
科研通AI2S应助suicone采纳,获得10
6秒前
dolabmu完成签到 ,获得积分10
6秒前
wanghan完成签到,获得积分10
6秒前
我是老大应助G1234采纳,获得10
7秒前
科研通AI5应助汉堡采纳,获得10
7秒前
燃烧的荷包蛋完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
miemie完成签到,获得积分10
9秒前
happpy完成签到,获得积分10
10秒前
orixero应助Lemon采纳,获得10
10秒前
阿凡达发布了新的文献求助10
11秒前
11秒前
郭一完成签到,获得积分10
11秒前
11秒前
颜倾完成签到 ,获得积分10
11秒前
Evan123完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
ding应助yyymmma采纳,获得10
12秒前
13秒前
悦耳的母鸡完成签到,获得积分10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841327
求助须知:如何正确求助?哪些是违规求助? 3383394
关于积分的说明 10529546
捐赠科研通 3103500
什么是DOI,文献DOI怎么找? 1709307
邀请新用户注册赠送积分活动 823049
科研通“疑难数据库(出版商)”最低求助积分说明 773806