A deep neural network improves endoscopic detection of early gastric cancer without blind spots

医学 食管胃十二指肠镜检查 卷积神经网络 恶性肿瘤 预测值 人工智能 盲点 内窥镜检查 癌症 放射科 内科学 计算机科学
作者
Lianlian Wu,Wei Zhou,Xinyue Wan,Jun Zhang,Lei Shen,Shan Hu,Qianshan Ding,Ganggang Mu,Anning Yin,Xu Huang,Jun Liu,Xiaoda Jiang,Zhengqiang Wang,Yunchao Deng,Mei Liu,Rong Lin,Tingsheng Ling,Peng Li,Qi Wu,Peng Jin
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:51 (06): 522-531 被引量:217
标识
DOI:10.1055/a-0855-3532
摘要

Abstract Background Gastric cancer is the third most lethal malignancy worldwide. A novel deep convolution neural network (DCNN) to perform visual tasks has been recently developed. The aim of this study was to build a system using the DCNN to detect early gastric cancer (EGC) without blind spots during esophagogastroduodenoscopy (EGD). Methods 3170 gastric cancer and 5981 benign images were collected to train the DCNN to detect EGC. A total of 24549 images from different parts of stomach were collected to train the DCNN to monitor blind spots. Class activation maps were developed to automatically cover suspicious cancerous regions. A grid model for the stomach was used to indicate the existence of blind spots in unprocessed EGD videos. Results The DCNN identified EGC from non-malignancy with an accuracy of 92.5 %, a sensitivity of 94.0 %, a specificity of 91.0 %, a positive predictive value of 91.3 %, and a negative predictive value of 93.8 %, outperforming all levels of endoscopists. In the task of classifying gastric locations into 10 or 26 parts, the DCNN achieved an accuracy of 90 % or 65.9 %, on a par with the performance of experts. In real-time unprocessed EGD videos, the DCNN achieved automated performance for detecting EGC and monitoring blind spots. Conclusions We developed a system based on a DCNN to accurately detect EGC and recognize gastric locations better than endoscopists, and proactively track suspicious cancerous lesions and monitor blind spots during EGD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浩想碎觉完成签到,获得积分10
1秒前
晓薇完成签到,获得积分10
4秒前
6秒前
pluto应助湖以采纳,获得10
7秒前
7秒前
zhou123432发布了新的文献求助10
10秒前
Zhidong Wei完成签到,获得积分10
11秒前
斯文败类应助清秀灵薇采纳,获得10
13秒前
谨慎的宝贝完成签到,获得积分20
14秒前
搜集达人应助平淡的鸿煊采纳,获得10
15秒前
冷傲的无剑完成签到,获得积分10
18秒前
zhou123432完成签到,获得积分20
21秒前
老阎应助猪猪hero采纳,获得30
21秒前
zwy完成签到,获得积分10
22秒前
平淡的鸿煊完成签到,获得积分10
23秒前
24秒前
梁业发布了新的文献求助10
27秒前
科研通AI5应助w5566采纳,获得50
32秒前
32秒前
hanzhipad应助tzhiwei采纳,获得60
34秒前
taotao完成签到,获得积分10
34秒前
打打应助JasonSun采纳,获得10
35秒前
38秒前
科研通AI2S应助梁业采纳,获得10
38秒前
斯文败类应助梁业采纳,获得10
38秒前
科研通AI2S应助Singularity采纳,获得10
38秒前
乐乐应助Truman采纳,获得10
40秒前
乐乐应助ingxiaiu采纳,获得10
40秒前
牙鸟完成签到,获得积分10
40秒前
mrlsrain发布了新的文献求助10
43秒前
45秒前
45秒前
充电宝应助zn315315采纳,获得10
46秒前
愤怒的小鸽子完成签到,获得积分10
46秒前
有终完成签到 ,获得积分10
46秒前
48秒前
49秒前
stick发布了新的文献求助10
50秒前
Bellah完成签到,获得积分10
52秒前
52秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843754
求助须知:如何正确求助?哪些是违规求助? 3386113
关于积分的说明 10543746
捐赠科研通 3106834
什么是DOI,文献DOI怎么找? 1711181
邀请新用户注册赠送积分活动 823978
科研通“疑难数据库(出版商)”最低求助积分说明 774390